##// END OF EJS Templates
3.2.0.7...
paul -
r357:0781840df513 R3++ draft
parent child
Show More
@@ -1,107 +1,107
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "6" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "7" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107 107
@@ -1,1019 +1,1040
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13 13
14 14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 16 {
17 17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 18 *
19 19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 22 * @param interrupt_level is the interrupt level that the timer drives.
23 23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 24 *
25 25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 26 *
27 27 */
28 28
29 29 rtems_status_code status;
30 30 rtems_isr_entry old_isr_handler;
31 31
32 32 old_isr_handler = NULL;
33 33
34 34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35 35
36 36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 37 if (status!=RTEMS_SUCCESSFUL)
38 38 {
39 39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 40 }
41 41
42 42 timer_set_clock_divider( timer, clock_divider);
43 43 }
44 44
45 45 void timer_start(unsigned char timer)
46 46 {
47 47 /** This function starts a GPTIMER timer.
48 48 *
49 49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 51 *
52 52 */
53 53
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 59 }
60 60
61 61 void timer_stop(unsigned char timer)
62 62 {
63 63 /** This function stops a GPTIMER timer.
64 64 *
65 65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 67 *
68 68 */
69 69
70 70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 73 }
74 74
75 75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 76 {
77 77 /** This function sets the clock divider of a GPTIMER timer.
78 78 *
79 79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 82 *
83 83 */
84 84
85 85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 86 }
87 87
88 88 // WATCHDOG
89 89
90 90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 91 {
92 92 rtems_status_code status_code;
93 93
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95 95
96 96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97 97
98 98 exit(0);
99 99 }
100 100
101 101 void watchdog_configure(void)
102 102 {
103 103 /** This function configure the watchdog.
104 104 *
105 105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 107 *
108 108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 109 *
110 110 */
111 111
112 112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113 113
114 114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115 115
116 116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 117 }
118 118
119 119 void watchdog_stop(void)
120 120 {
121 121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 122 timer_stop( TIMER_WATCHDOG );
123 123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 124 }
125 125
126 126 void watchdog_reload(void)
127 127 {
128 128 /** This function reloads the watchdog timer counter with the timer reload value.
129 129 *
130 130 * @param void
131 131 *
132 132 * @return void
133 133 *
134 134 */
135 135
136 136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 137 }
138 138
139 139 void watchdog_start(void)
140 140 {
141 141 /** This function starts the watchdog timer.
142 142 *
143 143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 145 *
146 146 */
147 147
148 148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149 149
150 150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154 154
155 155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156 156
157 157 }
158 158
159 159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 160 {
161 161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162 162
163 163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164 164
165 165 return 0;
166 166 }
167 167
168 168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 169 {
170 170 /** This function sets the scaler reload register of the apbuart module
171 171 *
172 172 * @param regs is the address of the apbuart registers in memory
173 173 * @param value is the value that will be stored in the scaler register
174 174 *
175 175 * The value shall be set by the software to get data on the serial interface.
176 176 *
177 177 */
178 178
179 179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180 180
181 181 apbuart_regs->scaler = value;
182 182
183 183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 184 }
185 185
186 186 //************
187 187 // RTEMS TASKS
188 188
189 189 rtems_task load_task(rtems_task_argument argument)
190 190 {
191 191 BOOT_PRINTF("in LOAD *** \n")
192 192
193 193 rtems_status_code status;
194 194 unsigned int i;
195 195 unsigned int j;
196 196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198 198
199 199 watchdog_period_id = RTEMS_ID_NONE;
200 200
201 201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202 202
203 203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 204 if( status != RTEMS_SUCCESSFUL ) {
205 205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 206 }
207 207
208 208 i = 0;
209 209 j = 0;
210 210
211 211 watchdog_configure();
212 212
213 213 watchdog_start();
214 214
215 215 set_sy_lfr_watchdog_enabled( true );
216 216
217 217 while(1){
218 218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 219 watchdog_reload();
220 220 i = i + 1;
221 221 if ( i == WATCHDOG_LOOP_PRINTF )
222 222 {
223 223 i = 0;
224 224 j = j + 1;
225 225 PRINTF1("%d\n", j)
226 226 }
227 227 #ifdef DEBUG_WATCHDOG
228 228 if (j == WATCHDOG_LOOP_DEBUG )
229 229 {
230 230 status = rtems_task_delete(RTEMS_SELF);
231 231 }
232 232 #endif
233 233 }
234 234 }
235 235
236 236 rtems_task hous_task(rtems_task_argument argument)
237 237 {
238 238 rtems_status_code status;
239 239 rtems_status_code spare_status;
240 240 rtems_id queue_id;
241 241 rtems_rate_monotonic_period_status period_status;
242 242 bool isSynchronized;
243 243
244 244 queue_id = RTEMS_ID_NONE;
245 245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 246 isSynchronized = false;
247 247
248 248 status = get_message_queue_id_send( &queue_id );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 252 }
253 253
254 254 BOOT_PRINTF("in HOUS ***\n");
255 255
256 256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 258 if( status != RTEMS_SUCCESSFUL ) {
259 259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 260 }
261 261 }
262 262
263 263 status = rtems_rate_monotonic_cancel(HK_id);
264 264 if( status != RTEMS_SUCCESSFUL ) {
265 265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 266 }
267 267 else {
268 268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 269 }
270 270
271 271 // startup phase
272 272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 277 {
278 278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 279 {
280 280 isSynchronized = true;
281 281 }
282 282 else
283 283 {
284 284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285 285
286 286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 287 }
288 288 }
289 289 status = rtems_rate_monotonic_cancel(HK_id);
290 290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291 291
292 292 set_hk_lfr_reset_cause( POWER_ON );
293 293
294 294 while(1){ // launch the rate monotonic task
295 295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 296 if ( status != RTEMS_SUCCESSFUL ) {
297 297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 299 }
300 300 else {
301 301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 303 increment_seq_counter( &sequenceCounterHK );
304 304
305 305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311 311
312 312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313 313
314 314 spacewire_read_statistics();
315 315
316 316 update_hk_with_grspw_stats();
317 317
318 318 set_hk_lfr_time_not_synchro();
319 319
320 320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325 325
326 326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331 331
332 332 hk_lfr_le_me_he_update();
333 333
334 334 // SEND PACKET
335 335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 337 if (status != RTEMS_SUCCESSFUL) {
338 338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 339 }
340 340 }
341 341 }
342 342
343 343 PRINTF("in HOUS *** deleting task\n")
344 344
345 345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346 346
347 347 return;
348 348 }
349 349
350 350 int32_t getIntFromShort( int reg )
351 351 {
352 352 int16_t ret_as_int16;
353 353 int32_t ret_as_int32;
354 354 char *regPtr;
355 355 char *ret_as_int16_ptr;
356 356
357 357 regPtr = (char*) ®
358 358 ret_as_int16_ptr = (char*) &ret_as_int16;
359 359
360 360 ret_as_int16_ptr[BYTE_0] = regPtr[BYTE_3];
361 361 ret_as_int16_ptr[BYTE_1] = regPtr[BYTE_4];
362 362
363 363 ret_as_int32 = (int32_t) ret_as_int16;
364 364
365 365 return ret_as_int32;
366 366 }
367 367
368 368 rtems_task avgv_task(rtems_task_argument argument)
369 369 {
370 370 #define MOVING_AVERAGE 16
371 371 rtems_status_code status;
372 372 static int32_t v[MOVING_AVERAGE] = {0};
373 373 static int32_t e1[MOVING_AVERAGE] = {0};
374 374 static int32_t e2[MOVING_AVERAGE] = {0};
375 static int old_v = 0;
376 static int old_e1 = 0;
377 static int old_e2 = 0;
378 int current_v;
379 int current_e1;
380 int current_e2;
375 381 int32_t average_v;
376 382 int32_t average_e1;
377 383 int32_t average_e2;
378 384 int32_t newValue_v;
379 385 int32_t newValue_e1;
380 386 int32_t newValue_e2;
381 387 unsigned char k;
382 388 unsigned char indexOfOldValue;
383 389
384 390 BOOT_PRINTF("in AVGV ***\n");
385 391
386 392 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
387 393 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
388 394 if( status != RTEMS_SUCCESSFUL ) {
389 395 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
390 396 }
391 397 }
392 398
393 399 status = rtems_rate_monotonic_cancel(AVGV_id);
394 400 if( status != RTEMS_SUCCESSFUL ) {
395 401 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
396 402 }
397 403 else {
398 404 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
399 405 }
400 406
401 407 // initialize values
402 408 indexOfOldValue = MOVING_AVERAGE - 1;
409 current_v = 0;
410 current_e1 = 0;
411 current_e2 = 0;
403 412 average_v = 0;
404 413 average_e1 = 0;
405 414 average_e2 = 0;
406 415 newValue_v = 0;
407 416 newValue_e1 = 0;
408 417 newValue_e2 = 0;
409 418
410 419 k = INIT_CHAR;
411 420
412 421 while(1)
413 422 { // launch the rate monotonic task
414 423 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
415 424 if ( status != RTEMS_SUCCESSFUL )
416 425 {
417 426 PRINTF1( "in AVGV *** ERR period: %d\n", status);
418 427 }
419 428 else
420 429 {
421 // get new values
422 newValue_v = getIntFromShort( waveform_picker_regs->v );
423 newValue_e1 = getIntFromShort( waveform_picker_regs->e1 );
424 newValue_e2 = getIntFromShort( waveform_picker_regs->e2 );
430 current_v = waveform_picker_regs->v;
431 current_e1 = waveform_picker_regs->e1;
432 current_e2 = waveform_picker_regs->e2;
433 if ( (current_v != old_v)
434 && (current_e1 != old_e1)
435 && (current_e2 != old_e2))
436 {
437 // get new values
438 newValue_v = getIntFromShort( current_v );
439 newValue_e1 = getIntFromShort( current_e1 );
440 newValue_e2 = getIntFromShort( current_e2 );
425 441
426 // compute the moving average
427 average_v = average_v + newValue_v - v[k];
428 average_e1 = average_e1 + newValue_e1 - e1[k];
429 average_e2 = average_e2 + newValue_e2 - e2[k];
442 // compute the moving average
443 average_v = average_v + newValue_v - v[k];
444 average_e1 = average_e1 + newValue_e1 - e1[k];
445 average_e2 = average_e2 + newValue_e2 - e2[k];
430 446
431 // store new values in buffers
432 v[k] = newValue_v;
433 e1[k] = newValue_e1;
434 e2[k] = newValue_e2;
435 }
436 if (k == (MOVING_AVERAGE-1))
437 {
438 k = 0;
447 // store new values in buffers
448 v[k] = newValue_v;
449 e1[k] = newValue_e1;
450 e2[k] = newValue_e2;
451
452 if (k == (MOVING_AVERAGE-1))
453 {
454 k = 0;
455 }
456 else
457 {
458 k++;
459 }
460 //update int16 values
461 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE );
462 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE );
463 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE );
464 }
465 old_v = current_v;
466 old_e1 = current_e1;
467 old_e2 = current_e2;
439 468 }
440 else
441 {
442 k++;
443 }
444 //update int16 values
445 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE );
446 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE );
447 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE );
448 469 }
449 470
450 471 PRINTF("in AVGV *** deleting task\n");
451 472
452 473 status = rtems_task_delete( RTEMS_SELF ); // should not return
453 474
454 475 return;
455 476 }
456 477
457 478 rtems_task dumb_task( rtems_task_argument unused )
458 479 {
459 480 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
460 481 *
461 482 * @param unused is the starting argument of the RTEMS task
462 483 *
463 484 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
464 485 *
465 486 */
466 487
467 488 unsigned int i;
468 489 unsigned int intEventOut;
469 490 unsigned int coarse_time = 0;
470 491 unsigned int fine_time = 0;
471 492 rtems_event_set event_out;
472 493
473 494 event_out = EVENT_SETS_NONE_PENDING;
474 495
475 496 BOOT_PRINTF("in DUMB *** \n")
476 497
477 498 while(1){
478 499 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
479 500 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
480 501 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
481 502 | RTEMS_EVENT_14,
482 503 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
483 504 intEventOut = (unsigned int) event_out;
484 505 for ( i=0; i<NB_RTEMS_EVENTS; i++)
485 506 {
486 507 if ( ((intEventOut >> i) & 1) != 0)
487 508 {
488 509 coarse_time = time_management_regs->coarse_time;
489 510 fine_time = time_management_regs->fine_time;
490 511 if (i==EVENT_12)
491 512 {
492 513 PRINTF1("%s\n", DUMB_MESSAGE_12)
493 514 }
494 515 if (i==EVENT_13)
495 516 {
496 517 PRINTF1("%s\n", DUMB_MESSAGE_13)
497 518 }
498 519 if (i==EVENT_14)
499 520 {
500 521 PRINTF1("%s\n", DUMB_MESSAGE_1)
501 522 }
502 523 }
503 524 }
504 525 }
505 526 }
506 527
507 528 //*****************************
508 529 // init housekeeping parameters
509 530
510 531 void init_housekeeping_parameters( void )
511 532 {
512 533 /** This function initialize the housekeeping_packet global variable with default values.
513 534 *
514 535 */
515 536
516 537 unsigned int i = 0;
517 538 unsigned char *parameters;
518 539 unsigned char sizeOfHK;
519 540
520 541 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
521 542
522 543 parameters = (unsigned char*) &housekeeping_packet;
523 544
524 545 for(i = 0; i< sizeOfHK; i++)
525 546 {
526 547 parameters[i] = INIT_CHAR;
527 548 }
528 549
529 550 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
530 551 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
531 552 housekeeping_packet.reserved = DEFAULT_RESERVED;
532 553 housekeeping_packet.userApplication = CCSDS_USER_APP;
533 554 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
534 555 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
535 556 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
536 557 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
537 558 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
538 559 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
539 560 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
540 561 housekeeping_packet.serviceType = TM_TYPE_HK;
541 562 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
542 563 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
543 564 housekeeping_packet.sid = SID_HK;
544 565
545 566 // init status word
546 567 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
547 568 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
548 569 // init software version
549 570 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
550 571 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
551 572 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
552 573 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
553 574 // init fpga version
554 575 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
555 576 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
556 577 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
557 578 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
558 579
559 580 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
560 581 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
561 582 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
562 583 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
563 584 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
564 585 }
565 586
566 587 void increment_seq_counter( unsigned short *packetSequenceControl )
567 588 {
568 589 /** This function increment the sequence counter passes in argument.
569 590 *
570 591 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
571 592 *
572 593 */
573 594
574 595 unsigned short segmentation_grouping_flag;
575 596 unsigned short sequence_cnt;
576 597
577 598 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
578 599 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
579 600
580 601 if ( sequence_cnt < SEQ_CNT_MAX)
581 602 {
582 603 sequence_cnt = sequence_cnt + 1;
583 604 }
584 605 else
585 606 {
586 607 sequence_cnt = 0;
587 608 }
588 609
589 610 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
590 611 }
591 612
592 613 void getTime( unsigned char *time)
593 614 {
594 615 /** This function write the current local time in the time buffer passed in argument.
595 616 *
596 617 */
597 618
598 619 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
599 620 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
600 621 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
601 622 time[3] = (unsigned char) (time_management_regs->coarse_time);
602 623 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
603 624 time[5] = (unsigned char) (time_management_regs->fine_time);
604 625 }
605 626
606 627 unsigned long long int getTimeAsUnsignedLongLongInt( )
607 628 {
608 629 /** This function write the current local time in the time buffer passed in argument.
609 630 *
610 631 */
611 632 unsigned long long int time;
612 633
613 634 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
614 635 + time_management_regs->fine_time;
615 636
616 637 return time;
617 638 }
618 639
619 640 void send_dumb_hk( void )
620 641 {
621 642 Packet_TM_LFR_HK_t dummy_hk_packet;
622 643 unsigned char *parameters;
623 644 unsigned int i;
624 645 rtems_id queue_id;
625 646
626 647 queue_id = RTEMS_ID_NONE;
627 648
628 649 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
629 650 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
630 651 dummy_hk_packet.reserved = DEFAULT_RESERVED;
631 652 dummy_hk_packet.userApplication = CCSDS_USER_APP;
632 653 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
633 654 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
634 655 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
635 656 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
636 657 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
637 658 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
638 659 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
639 660 dummy_hk_packet.serviceType = TM_TYPE_HK;
640 661 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
641 662 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
642 663 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
643 664 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
644 665 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
645 666 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
646 667 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
647 668 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
648 669 dummy_hk_packet.sid = SID_HK;
649 670
650 671 // init status word
651 672 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
652 673 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
653 674 // init software version
654 675 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
655 676 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
656 677 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
657 678 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
658 679 // init fpga version
659 680 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
660 681 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
661 682 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
662 683 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
663 684
664 685 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
665 686
666 687 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
667 688 {
668 689 parameters[i] = INT8_ALL_F;
669 690 }
670 691
671 692 get_message_queue_id_send( &queue_id );
672 693
673 694 rtems_message_queue_send( queue_id, &dummy_hk_packet,
674 695 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
675 696 }
676 697
677 698 void get_temperatures( unsigned char *temperatures )
678 699 {
679 700 unsigned char* temp_scm_ptr;
680 701 unsigned char* temp_pcb_ptr;
681 702 unsigned char* temp_fpga_ptr;
682 703
683 704 // SEL1 SEL0
684 705 // 0 0 => PCB
685 706 // 0 1 => FPGA
686 707 // 1 0 => SCM
687 708
688 709 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
689 710 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
690 711 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
691 712
692 713 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
693 714 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
694 715 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
695 716 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
696 717 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
697 718 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
698 719 }
699 720
700 721 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
701 722 {
702 723 unsigned char* v_ptr;
703 724 unsigned char* e1_ptr;
704 725 unsigned char* e2_ptr;
705 726
706 727 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
707 728 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
708 729 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
709 730
710 731 spacecraft_potential[BYTE_0] = v_ptr[0];
711 732 spacecraft_potential[BYTE_1] = v_ptr[1];
712 733 spacecraft_potential[BYTE_2] = e1_ptr[0];
713 734 spacecraft_potential[BYTE_3] = e1_ptr[1];
714 735 spacecraft_potential[BYTE_4] = e2_ptr[0];
715 736 spacecraft_potential[BYTE_5] = e2_ptr[1];
716 737 }
717 738
718 739 void get_cpu_load( unsigned char *resource_statistics )
719 740 {
720 741 unsigned char cpu_load;
721 742
722 743 cpu_load = lfr_rtems_cpu_usage_report();
723 744
724 745 // HK_LFR_CPU_LOAD
725 746 resource_statistics[0] = cpu_load;
726 747
727 748 // HK_LFR_CPU_LOAD_MAX
728 749 if (cpu_load > resource_statistics[1])
729 750 {
730 751 resource_statistics[1] = cpu_load;
731 752 }
732 753
733 754 // CPU_LOAD_AVE
734 755 resource_statistics[BYTE_2] = 0;
735 756
736 757 #ifndef PRINT_TASK_STATISTICS
737 758 rtems_cpu_usage_reset();
738 759 #endif
739 760
740 761 }
741 762
742 763 void set_hk_lfr_sc_potential_flag( bool state )
743 764 {
744 765 if (state == true)
745 766 {
746 767 housekeeping_packet.lfr_status_word[1] =
747 768 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
748 769 }
749 770 else
750 771 {
751 772 housekeeping_packet.lfr_status_word[1] =
752 773 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
753 774 }
754 775 }
755 776
756 777 void set_sy_lfr_pas_filter_enabled( bool state )
757 778 {
758 779 if (state == true)
759 780 {
760 781 housekeeping_packet.lfr_status_word[1] =
761 782 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
762 783 }
763 784 else
764 785 {
765 786 housekeeping_packet.lfr_status_word[1] =
766 787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
767 788 }
768 789 }
769 790
770 791 void set_sy_lfr_watchdog_enabled( bool state )
771 792 {
772 793 if (state == true)
773 794 {
774 795 housekeeping_packet.lfr_status_word[1] =
775 796 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
776 797 }
777 798 else
778 799 {
779 800 housekeeping_packet.lfr_status_word[1] =
780 801 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
781 802 }
782 803 }
783 804
784 805 void set_hk_lfr_calib_enable( bool state )
785 806 {
786 807 if (state == true)
787 808 {
788 809 housekeeping_packet.lfr_status_word[1] =
789 810 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
790 811 }
791 812 else
792 813 {
793 814 housekeeping_packet.lfr_status_word[1] =
794 815 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
795 816 }
796 817 }
797 818
798 819 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
799 820 {
800 821 housekeeping_packet.lfr_status_word[1] =
801 822 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
802 823
803 824 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
804 825 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
805 826
806 827 }
807 828
808 829 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
809 830 {
810 831 int delta;
811 832
812 833 delta = 0;
813 834
814 835 if (newValue >= oldValue)
815 836 {
816 837 delta = newValue - oldValue;
817 838 }
818 839 else
819 840 {
820 841 delta = (CONST_256 - oldValue) + newValue;
821 842 }
822 843
823 844 *counter = *counter + delta;
824 845 }
825 846
826 847 void hk_lfr_le_update( void )
827 848 {
828 849 static hk_lfr_le_t old_hk_lfr_le = {0};
829 850 hk_lfr_le_t new_hk_lfr_le;
830 851 unsigned int counter;
831 852
832 853 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
833 854
834 855 // DPU
835 856 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
836 857 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
837 858 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
838 859 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
839 860 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
840 861 // TIMECODE
841 862 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
842 863 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
843 864 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
844 865 // TIME
845 866 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
846 867 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
847 868 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
848 869 //AHB
849 870 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
850 871 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
851 872 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
852 873
853 874 // update the le counter
854 875 // DPU
855 876 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
856 877 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
857 878 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
858 879 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
859 880 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
860 881 // TIMECODE
861 882 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
862 883 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
863 884 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
864 885 // TIME
865 886 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
866 887 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
867 888 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
868 889 // AHB
869 890 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
870 891
871 892 // DPU
872 893 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
873 894 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
874 895 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
875 896 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
876 897 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
877 898 // TIMECODE
878 899 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
879 900 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
880 901 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
881 902 // TIME
882 903 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
883 904 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
884 905 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
885 906 //AHB
886 907 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
887 908 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
888 909 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
889 910
890 911 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
891 912 // LE
892 913 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
893 914 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
894 915 }
895 916
896 917 void hk_lfr_me_update( void )
897 918 {
898 919 static hk_lfr_me_t old_hk_lfr_me = {0};
899 920 hk_lfr_me_t new_hk_lfr_me;
900 921 unsigned int counter;
901 922
902 923 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
903 924
904 925 // get the current values
905 926 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
906 927 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
907 928 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
908 929 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
909 930
910 931 // update the me counter
911 932 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
912 933 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
913 934 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
914 935 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
915 936
916 937 // store the counters for the next time
917 938 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
918 939 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
919 940 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
920 941 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
921 942
922 943 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
923 944 // ME
924 945 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
925 946 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
926 947 }
927 948
928 949 void hk_lfr_le_me_he_update()
929 950 {
930 951
931 952 unsigned int hk_lfr_he_cnt;
932 953
933 954 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
934 955
935 956 //update the low severity error counter
936 957 hk_lfr_le_update( );
937 958
938 959 //update the medium severity error counter
939 960 hk_lfr_me_update();
940 961
941 962 //update the high severity error counter
942 963 hk_lfr_he_cnt = 0;
943 964
944 965 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
945 966 // HE
946 967 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
947 968 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
948 969
949 970 }
950 971
951 972 void set_hk_lfr_time_not_synchro()
952 973 {
953 974 static unsigned char synchroLost = 1;
954 975 int synchronizationBit;
955 976
956 977 // get the synchronization bit
957 978 synchronizationBit =
958 979 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
959 980
960 981 switch (synchronizationBit)
961 982 {
962 983 case 0:
963 984 if (synchroLost == 1)
964 985 {
965 986 synchroLost = 0;
966 987 }
967 988 break;
968 989 case 1:
969 990 if (synchroLost == 0 )
970 991 {
971 992 synchroLost = 1;
972 993 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
973 994 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
974 995 }
975 996 break;
976 997 default:
977 998 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
978 999 break;
979 1000 }
980 1001
981 1002 }
982 1003
983 1004 void set_hk_lfr_ahb_correctable() // CRITICITY L
984 1005 {
985 1006 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
986 1007 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
987 1008 * detected errors in the cache, in the integer unit and in the floating point unit.
988 1009 *
989 1010 * @param void
990 1011 *
991 1012 * @return void
992 1013 *
993 1014 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
994 1015 *
995 1016 */
996 1017
997 1018 unsigned int ahb_correctable;
998 1019 unsigned int instructionErrorCounter;
999 1020 unsigned int dataErrorCounter;
1000 1021 unsigned int fprfErrorCounter;
1001 1022 unsigned int iurfErrorCounter;
1002 1023
1003 1024 instructionErrorCounter = 0;
1004 1025 dataErrorCounter = 0;
1005 1026 fprfErrorCounter = 0;
1006 1027 iurfErrorCounter = 0;
1007 1028
1008 1029 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1009 1030 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1010 1031
1011 1032 ahb_correctable = instructionErrorCounter
1012 1033 + dataErrorCounter
1013 1034 + fprfErrorCounter
1014 1035 + iurfErrorCounter
1015 1036 + housekeeping_packet.hk_lfr_ahb_correctable;
1016 1037
1017 1038 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1018 1039
1019 1040 }
General Comments 0
You need to be logged in to leave comments. Login now