##// END OF EJS Templates
Merge pull request 229 from SCIQLOP-Initialisation develop...
perrinel -
r588:aa5771ec396c merge
parent child
Show More
@@ -0,0 +1,19
1 #ifndef SCIQLOP_COLORUTILS_H
2 #define SCIQLOP_COLORUTILS_H
3
4 #include <vector>
5
6 class QColor;
7
8 /**
9 * Utility class with methods for colors
10 */
11 struct ColorUtils {
12 /// Generates a color scale from min / max values and a number of colors.
13 /// The algorithm uses the HSV color model to generate color variations (see
14 /// http://doc.qt.io/qt-4.8/qcolor.html#the-hsv-color-model)
15 static std::vector<QColor> colors(const QColor &minColor, const QColor &maxColor,
16 int nbColors) noexcept;
17 };
18
19 #endif // SCIQLOP_COLORUTILS_H
@@ -0,0 +1,10
1 #ifndef SCIQLOP_VISUALIZATIONDEFS_H
2 #define SCIQLOP_VISUALIZATIONDEFS_H
3
4 #include <map>
5
6 class QCPAbstractPlottable;
7
8 using PlottablesMap = std::map<int, QCPAbstractPlottable *>;
9
10 #endif // SCIQLOP_VISUALIZATIONDEFS_H
@@ -0,0 +1,29
1 #include "Common/ColorUtils.h"
2
3 #include <QtGui/QColor>
4
5 std::vector<QColor> ColorUtils::colors(const QColor &minColor, const QColor &maxColor,
6 int nbColors) noexcept
7 {
8 auto result = std::vector<QColor>{};
9
10 if (nbColors == 1) {
11 result.push_back(minColor);
12 }
13 else if (nbColors > 0) {
14 const auto nbSteps = static_cast<double>(nbColors - 1);
15
16 const auto colorHStep = (maxColor.hue() - minColor.hue()) / nbSteps;
17 const auto colorSStep = (maxColor.saturation() - minColor.saturation()) / nbSteps;
18 const auto colorVStep = (maxColor.value() - minColor.value()) / nbSteps;
19 const auto colorAStep = (maxColor.alpha() - minColor.alpha()) / nbSteps;
20
21 for (auto i = 0; i < nbColors; ++i) {
22 result.push_back(QColor::fromHsv(
23 minColor.hue() + i * colorHStep, minColor.saturation() + i * colorSStep,
24 minColor.value() + i * colorVStep, minColor.alpha() + i * colorAStep));
25 }
26 }
27
28 return result;
29 }
@@ -1,313 +1,315
1 1 #ifndef SCIQLOP_ARRAYDATA_H
2 2 #define SCIQLOP_ARRAYDATA_H
3 3
4 4 #include <Common/SortUtils.h>
5 5
6 6 #include <QReadLocker>
7 7 #include <QReadWriteLock>
8 8 #include <QVector>
9 9
10 10 #include <memory>
11 11
12 12 template <int Dim>
13 13 class ArrayData;
14 14
15 15 using DataContainer = QVector<QVector<double> >;
16 16
17 17 namespace arraydata_detail {
18 18
19 19 /// Struct used to sort ArrayData
20 20 template <int Dim>
21 21 struct Sort {
22 22 static std::shared_ptr<ArrayData<Dim> > sort(const DataContainer &data,
23 23 const std::vector<int> &sortPermutation)
24 24 {
25 25 auto nbComponents = data.size();
26 26 auto sortedData = DataContainer(nbComponents);
27 27
28 28 for (auto i = 0; i < nbComponents; ++i) {
29 29 sortedData[i] = SortUtils::sort(data.at(i), sortPermutation);
30 30 }
31 31
32 32 return std::make_shared<ArrayData<Dim> >(std::move(sortedData));
33 33 }
34 34 };
35 35
36 36 /// Specialization for uni-dimensional ArrayData
37 37 template <>
38 38 struct Sort<1> {
39 39 static std::shared_ptr<ArrayData<1> > sort(const DataContainer &data,
40 40 const std::vector<int> &sortPermutation)
41 41 {
42 42 return std::make_shared<ArrayData<1> >(SortUtils::sort(data.at(0), sortPermutation));
43 43 }
44 44 };
45 45
46 46 } // namespace arraydata_detail
47 47
48 48 /**
49 49 * @brief The ArrayData class represents a dataset for a data series.
50 50 *
51 51 * A dataset can be unidimensional or two-dimensional. This property is determined by the Dim
52 52 * template-parameter. In a case of a two-dimensional dataset, each dataset component has the same
53 53 * number of values
54 54 *
55 55 * @tparam Dim the dimension of the ArrayData (one or two)
56 56 * @sa IDataSeries
57 57 */
58 58 template <int Dim>
59 59 class ArrayData {
60 60 public:
61 61 class IteratorValue {
62 62 public:
63 63 explicit IteratorValue(const DataContainer &container, bool begin) : m_Its{}
64 64 {
65 65 for (auto i = 0; i < container.size(); ++i) {
66 66 m_Its.push_back(begin ? container.at(i).cbegin() : container.at(i).cend());
67 67 }
68 68 }
69 69
70 70 double at(int index) const { return *m_Its.at(index); }
71 71 double first() const { return *m_Its.front(); }
72 72
73 73 void next()
74 74 {
75 75 for (auto &it : m_Its) {
76 76 ++it;
77 77 }
78 78 }
79 79
80 80 bool operator==(const IteratorValue &other) const { return m_Its == other.m_Its; }
81 81
82 82 private:
83 83 std::vector<DataContainer::value_type::const_iterator> m_Its;
84 84 };
85 85
86 86 class Iterator {
87 87 public:
88 88 using iterator_category = std::forward_iterator_tag;
89 89 using value_type = const IteratorValue;
90 90 using difference_type = std::ptrdiff_t;
91 91 using pointer = value_type *;
92 92 using reference = value_type &;
93 93
94 94 Iterator(const DataContainer &container, bool begin) : m_CurrentValue{container, begin} {}
95 95
96 96 virtual ~Iterator() noexcept = default;
97 97 Iterator(const Iterator &) = default;
98 98 Iterator(Iterator &&) = default;
99 99 Iterator &operator=(const Iterator &) = default;
100 100 Iterator &operator=(Iterator &&) = default;
101 101
102 102 Iterator &operator++()
103 103 {
104 104 m_CurrentValue.next();
105 105 return *this;
106 106 }
107 107
108 108 pointer operator->() const { return &m_CurrentValue; }
109 109 reference operator*() const { return m_CurrentValue; }
110 110
111 111 bool operator==(const Iterator &other) const
112 112 {
113 113 return m_CurrentValue == other.m_CurrentValue;
114 114 }
115 115
116 116 bool operator!=(const Iterator &other) const { return !(*this == other); }
117 117
118 118 private:
119 119 IteratorValue m_CurrentValue;
120 120 };
121 121
122 122 // ///// //
123 123 // Ctors //
124 124 // ///// //
125 125
126 126 /**
127 127 * Ctor for a unidimensional ArrayData
128 128 * @param data the data the ArrayData will hold
129 129 */
130 130 template <int D = Dim, typename = std::enable_if_t<D == 1> >
131 131 explicit ArrayData(QVector<double> data) : m_Data{1, QVector<double>{}}
132 132 {
133 133 m_Data[0] = std::move(data);
134 134 }
135 135
136 136 /**
137 137 * Ctor for a two-dimensional ArrayData. The number of components (number of vectors) must be
138 138 * greater than 2 and each component must have the same number of values
139 139 * @param data the data the ArrayData will hold
140 140 * @throws std::invalid_argument if the number of components is less than 2
141 141 * @remarks if the number of values is not the same for each component, no value is set
142 142 */
143 143 template <int D = Dim, typename = std::enable_if_t<D == 2> >
144 144 explicit ArrayData(DataContainer data)
145 145 {
146 146 auto nbComponents = data.size();
147 147 if (nbComponents < 2) {
148 148 throw std::invalid_argument{
149 149 QString{"A multidimensional ArrayData must have at least 2 components (found: %1"}
150 150 .arg(data.size())
151 151 .toStdString()};
152 152 }
153 153
154 154 auto nbValues = data.front().size();
155 155 if (std::all_of(data.cbegin(), data.cend(), [nbValues](const auto &component) {
156 156 return component.size() == nbValues;
157 157 })) {
158 158 m_Data = std::move(data);
159 159 }
160 160 else {
161 161 m_Data = DataContainer{nbComponents, QVector<double>{}};
162 162 }
163 163 }
164 164
165 165 /// Copy ctor
166 166 explicit ArrayData(const ArrayData &other)
167 167 {
168 168 QReadLocker otherLocker{&other.m_Lock};
169 169 m_Data = other.m_Data;
170 170 }
171 171
172 172 // /////////////// //
173 173 // General methods //
174 174 // /////////////// //
175 175
176 176 /**
177 177 * Merges into the array data an other array data. The two array datas must have the same number
178 178 * of components so the merge can be done
179 179 * @param other the array data to merge with
180 180 * @param prepend if true, the other array data is inserted at the beginning, otherwise it is
181 181 * inserted at the end
182 182 */
183 183 void add(const ArrayData<Dim> &other, bool prepend = false)
184 184 {
185 185 QWriteLocker locker{&m_Lock};
186 186 QReadLocker otherLocker{&other.m_Lock};
187 187
188 188 auto nbComponents = m_Data.size();
189 189 if (nbComponents != other.m_Data.size()) {
190 190 return;
191 191 }
192 192
193 193 for (auto componentIndex = 0; componentIndex < nbComponents; ++componentIndex) {
194 194 if (prepend) {
195 195 const auto &otherData = other.data(componentIndex);
196 196 const auto otherDataSize = otherData.size();
197 197
198 198 auto &data = m_Data[componentIndex];
199 199 data.insert(data.begin(), otherDataSize, 0.);
200 200
201 201 for (auto i = 0; i < otherDataSize; ++i) {
202 202 data.replace(i, otherData.at(i));
203 203 }
204 204 }
205 205 else {
206 206 m_Data[componentIndex] += other.data(componentIndex);
207 207 }
208 208 }
209 209 }
210 210
211 211 void clear()
212 212 {
213 213 QWriteLocker locker{&m_Lock};
214 214
215 215 auto nbComponents = m_Data.size();
216 216 for (auto i = 0; i < nbComponents; ++i) {
217 217 m_Data[i].clear();
218 218 }
219 219 }
220 220
221 int componentCount() const noexcept { return m_Data.size(); }
222
221 223 /**
222 224 * @return the data of a component
223 225 * @param componentIndex the index of the component to retrieve the data
224 226 * @return the component's data, empty vector if the index is invalid
225 227 */
226 228 QVector<double> data(int componentIndex) const noexcept
227 229 {
228 230 QReadLocker locker{&m_Lock};
229 231
230 232 return (componentIndex >= 0 && componentIndex < m_Data.size()) ? m_Data.at(componentIndex)
231 233 : QVector<double>{};
232 234 }
233 235
234 236 /// @return the size (i.e. number of values) of a single component
235 237 /// @remarks in a case of a two-dimensional ArrayData, each component has the same size
236 238 int size() const
237 239 {
238 240 QReadLocker locker{&m_Lock};
239 241 return m_Data[0].size();
240 242 }
241 243
242 244 std::shared_ptr<ArrayData<Dim> > sort(const std::vector<int> &sortPermutation)
243 245 {
244 246 QReadLocker locker{&m_Lock};
245 247 return arraydata_detail::Sort<Dim>::sort(m_Data, sortPermutation);
246 248 }
247 249
248 250 // ///////// //
249 251 // Iterators //
250 252 // ///////// //
251 253
252 254 Iterator cbegin() const { return Iterator{m_Data, true}; }
253 255 Iterator cend() const { return Iterator{m_Data, false}; }
254 256
255 257 // ///////////// //
256 258 // 1-dim methods //
257 259 // ///////////// //
258 260
259 261 /**
260 262 * @return the data at a specified index
261 263 * @remarks index must be a valid position
262 264 * @remarks this method is only available for a unidimensional ArrayData
263 265 */
264 266 template <int D = Dim, typename = std::enable_if_t<D == 1> >
265 267 double at(int index) const noexcept
266 268 {
267 269 QReadLocker locker{&m_Lock};
268 270 return m_Data[0].at(index);
269 271 }
270 272
271 273 /**
272 274 * @return the data as a vector, as a const reference
273 275 * @remarks this method is only available for a unidimensional ArrayData
274 276 */
275 277 template <int D = Dim, typename = std::enable_if_t<D == 1> >
276 278 const QVector<double> &cdata() const noexcept
277 279 {
278 280 QReadLocker locker{&m_Lock};
279 281 return m_Data.at(0);
280 282 }
281 283
282 284 /**
283 285 * @return the data as a vector
284 286 * @remarks this method is only available for a unidimensional ArrayData
285 287 */
286 288 template <int D = Dim, typename = std::enable_if_t<D == 1> >
287 289 QVector<double> data() const noexcept
288 290 {
289 291 QReadLocker locker{&m_Lock};
290 292 return m_Data[0];
291 293 }
292 294
293 295 // ///////////// //
294 296 // 2-dim methods //
295 297 // ///////////// //
296 298
297 299 /**
298 300 * @return the data
299 301 * @remarks this method is only available for a two-dimensional ArrayData
300 302 */
301 303 template <int D = Dim, typename = std::enable_if_t<D == 2> >
302 304 DataContainer data() const noexcept
303 305 {
304 306 QReadLocker locker{&m_Lock};
305 307 return m_Data;
306 308 }
307 309
308 310 private:
309 311 DataContainer m_Data;
310 312 mutable QReadWriteLock m_Lock;
311 313 };
312 314
313 315 #endif // SCIQLOP_ARRAYDATA_H
@@ -1,293 +1,293
1 1 #ifndef SCIQLOP_DATASERIES_H
2 2 #define SCIQLOP_DATASERIES_H
3 3
4 4 #include "CoreGlobal.h"
5 5
6 6 #include <Common/SortUtils.h>
7 7
8 8 #include <Data/ArrayData.h>
9 9 #include <Data/IDataSeries.h>
10 10
11 11 #include <QLoggingCategory>
12 12 #include <QReadLocker>
13 13 #include <QReadWriteLock>
14 14 #include <memory>
15 15
16 16 // We don't use the Qt macro since the log is used in the header file, which causes multiple log
17 17 // definitions with inheritance. Inline method is used instead
18 18 inline const QLoggingCategory &LOG_DataSeries()
19 19 {
20 20 static const QLoggingCategory category{"DataSeries"};
21 21 return category;
22 22 }
23 23
24 24 /**
25 25 * @brief The DataSeries class is the base (abstract) implementation of IDataSeries.
26 26 *
27 27 * It proposes to set a dimension for the values ​​data.
28 28 *
29 29 * A DataSeries is always sorted on its x-axis data.
30 30 *
31 31 * @tparam Dim The dimension of the values data
32 32 *
33 33 */
34 34 template <int Dim>
35 35 class SCIQLOP_CORE_EXPORT DataSeries : public IDataSeries {
36 36 public:
37 37 class IteratorValue {
38 38 public:
39 39 explicit IteratorValue(const DataSeries &dataSeries, bool begin)
40 40 : m_XIt(begin ? dataSeries.xAxisData()->cbegin() : dataSeries.xAxisData()->cend()),
41 41 m_ValuesIt(begin ? dataSeries.valuesData()->cbegin()
42 42 : dataSeries.valuesData()->cend())
43 43 {
44 44 }
45 45
46 46 double x() const { return m_XIt->at(0); }
47 47 double value() const { return m_ValuesIt->at(0); }
48 48 double value(int componentIndex) const { return m_ValuesIt->at(componentIndex); }
49 49
50 50 void next()
51 51 {
52 52 ++m_XIt;
53 53 ++m_ValuesIt;
54 54 }
55 55
56 56 bool operator==(const IteratorValue &other) const
57 57 {
58 58 return std::tie(m_XIt, m_ValuesIt) == std::tie(other.m_XIt, other.m_ValuesIt);
59 59 }
60 60
61 61 private:
62 62 ArrayData<1>::Iterator m_XIt;
63 63 typename ArrayData<Dim>::Iterator m_ValuesIt;
64 64 };
65 65
66 66 class Iterator {
67 67 public:
68 68 using iterator_category = std::forward_iterator_tag;
69 69 using value_type = const IteratorValue;
70 70 using difference_type = std::ptrdiff_t;
71 71 using pointer = value_type *;
72 72 using reference = value_type &;
73 73
74 74 Iterator(const DataSeries &dataSeries, bool begin) : m_CurrentValue{dataSeries, begin} {}
75 75 virtual ~Iterator() noexcept = default;
76 76 Iterator(const Iterator &) = default;
77 77 Iterator(Iterator &&) = default;
78 78 Iterator &operator=(const Iterator &) = default;
79 79 Iterator &operator=(Iterator &&) = default;
80 80
81 81 Iterator &operator++()
82 82 {
83 83 m_CurrentValue.next();
84 84 return *this;
85 85 }
86 86
87 87 pointer operator->() const { return &m_CurrentValue; }
88 88
89 89 reference operator*() const { return m_CurrentValue; }
90 90
91 91 bool operator==(const Iterator &other) const
92 92 {
93 93 return m_CurrentValue == other.m_CurrentValue;
94 94 }
95 95
96 96 bool operator!=(const Iterator &other) const { return !(*this == other); }
97 97
98 98 private:
99 99 IteratorValue m_CurrentValue;
100 100 };
101 101
102 102 /// @sa IDataSeries::xAxisData()
103 103 std::shared_ptr<ArrayData<1> > xAxisData() override { return m_XAxisData; }
104 104 const std::shared_ptr<ArrayData<1> > xAxisData() const { return m_XAxisData; }
105 105
106 106 /// @sa IDataSeries::xAxisUnit()
107 107 Unit xAxisUnit() const override { return m_XAxisUnit; }
108 108
109 109 /// @return the values dataset
110 110 std::shared_ptr<ArrayData<Dim> > valuesData() { return m_ValuesData; }
111 111 const std::shared_ptr<ArrayData<Dim> > valuesData() const { return m_ValuesData; }
112 112
113 113 /// @sa IDataSeries::valuesUnit()
114 114 Unit valuesUnit() const override { return m_ValuesUnit; }
115 115
116 116
117 117 SqpRange range() const override
118 118 {
119 119 if (!m_XAxisData->cdata().isEmpty()) {
120 120 return SqpRange{m_XAxisData->cdata().first(), m_XAxisData->cdata().last()};
121 121 }
122 122
123 123 return SqpRange{};
124 124 }
125 125
126 126 void clear()
127 127 {
128 128 m_XAxisData->clear();
129 129 m_ValuesData->clear();
130 130 }
131 131
132 132 /// Merges into the data series an other data series
133 133 /// @remarks the data series to merge with is cleared after the operation
134 134 void merge(IDataSeries *dataSeries) override
135 135 {
136 136 dataSeries->lockWrite();
137 137 lockWrite();
138 138
139 139 if (auto other = dynamic_cast<DataSeries<Dim> *>(dataSeries)) {
140 140 const auto &otherXAxisData = other->xAxisData()->cdata();
141 141 const auto &xAxisData = m_XAxisData->cdata();
142 142
143 143 // As data series are sorted, we can improve performances of merge, by call the sort
144 144 // method only if the two data series overlap.
145 145 if (!otherXAxisData.empty()) {
146 146 auto firstValue = otherXAxisData.front();
147 147 auto lastValue = otherXAxisData.back();
148 148
149 149 auto xAxisDataBegin = xAxisData.cbegin();
150 150 auto xAxisDataEnd = xAxisData.cend();
151 151
152 152 bool prepend;
153 153 bool sortNeeded;
154 154
155 155 if (std::lower_bound(xAxisDataBegin, xAxisDataEnd, firstValue) == xAxisDataEnd) {
156 156 // Other data series if after data series
157 157 prepend = false;
158 158 sortNeeded = false;
159 159 }
160 160 else if (std::upper_bound(xAxisDataBegin, xAxisDataEnd, lastValue)
161 161 == xAxisDataBegin) {
162 162 // Other data series if before data series
163 163 prepend = true;
164 164 sortNeeded = false;
165 165 }
166 166 else {
167 167 // The two data series overlap
168 168 prepend = false;
169 169 sortNeeded = true;
170 170 }
171 171
172 172 // Makes the merge
173 173 m_XAxisData->add(*other->xAxisData(), prepend);
174 174 m_ValuesData->add(*other->valuesData(), prepend);
175 175
176 176 if (sortNeeded) {
177 177 sort();
178 178 }
179 179 }
180 180
181 181 // Clears the other data series
182 182 other->clear();
183 183 }
184 184 else {
185 185 qCWarning(LOG_DataSeries())
186 186 << QObject::tr("Detection of a type of IDataSeries we cannot merge with !");
187 187 }
188 188 unlock();
189 189 dataSeries->unlock();
190 190 }
191 191
192 192 // ///////// //
193 193 // Iterators //
194 194 // ///////// //
195 195
196 196 Iterator cbegin() const { return Iterator{*this, true}; }
197 197
198 198 Iterator cend() const { return Iterator{*this, false}; }
199 199
200 200 std::pair<Iterator, Iterator> subData(double min, double max) const
201 201 {
202 202 if (min > max) {
203 203 std::swap(min, max);
204 204 }
205 205
206 206 auto begin = cbegin();
207 207 auto end = cend();
208 208
209 209 auto lowerIt
210 210 = std::lower_bound(begin, end, min, [](const auto &itValue, const auto &value) {
211 return itValue.x() == value;
211 return itValue.x() < value;
212 212 });
213 213 auto upperIt
214 214 = std::upper_bound(begin, end, max, [](const auto &value, const auto &itValue) {
215 return itValue.x() == value;
215 return value < itValue.x();
216 216 });
217 217
218 218 return std::make_pair(lowerIt, upperIt);
219 219 }
220 220
221 221 // /////// //
222 222 // Mutexes //
223 223 // /////// //
224 224
225 225 virtual void lockRead() { m_Lock.lockForRead(); }
226 226 virtual void lockWrite() { m_Lock.lockForWrite(); }
227 227 virtual void unlock() { m_Lock.unlock(); }
228 228
229 229 protected:
230 230 /// Protected ctor (DataSeries is abstract). The vectors must have the same size, otherwise a
231 231 /// DataSeries with no values will be created.
232 232 /// @remarks data series is automatically sorted on its x-axis data
233 233 explicit DataSeries(std::shared_ptr<ArrayData<1> > xAxisData, const Unit &xAxisUnit,
234 234 std::shared_ptr<ArrayData<Dim> > valuesData, const Unit &valuesUnit)
235 235 : m_XAxisData{xAxisData},
236 236 m_XAxisUnit{xAxisUnit},
237 237 m_ValuesData{valuesData},
238 238 m_ValuesUnit{valuesUnit}
239 239 {
240 240 if (m_XAxisData->size() != m_ValuesData->size()) {
241 241 clear();
242 242 }
243 243
244 244 // Sorts data if it's not the case
245 245 const auto &xAxisCData = m_XAxisData->cdata();
246 246 if (!std::is_sorted(xAxisCData.cbegin(), xAxisCData.cend())) {
247 247 sort();
248 248 }
249 249 }
250 250
251 251 /// Copy ctor
252 252 explicit DataSeries(const DataSeries<Dim> &other)
253 253 : m_XAxisData{std::make_shared<ArrayData<1> >(*other.m_XAxisData)},
254 254 m_XAxisUnit{other.m_XAxisUnit},
255 255 m_ValuesData{std::make_shared<ArrayData<Dim> >(*other.m_ValuesData)},
256 256 m_ValuesUnit{other.m_ValuesUnit}
257 257 {
258 258 // Since a series is ordered from its construction and is always ordered, it is not
259 259 // necessary to call the sort method here ('other' is sorted)
260 260 }
261 261
262 262 /// Assignment operator
263 263 template <int D>
264 264 DataSeries &operator=(DataSeries<D> other)
265 265 {
266 266 std::swap(m_XAxisData, other.m_XAxisData);
267 267 std::swap(m_XAxisUnit, other.m_XAxisUnit);
268 268 std::swap(m_ValuesData, other.m_ValuesData);
269 269 std::swap(m_ValuesUnit, other.m_ValuesUnit);
270 270
271 271 return *this;
272 272 }
273 273
274 274 private:
275 275 /**
276 276 * Sorts data series on its x-axis data
277 277 */
278 278 void sort() noexcept
279 279 {
280 280 auto permutation = SortUtils::sortPermutation(*m_XAxisData, std::less<double>());
281 281 m_XAxisData = m_XAxisData->sort(permutation);
282 282 m_ValuesData = m_ValuesData->sort(permutation);
283 283 }
284 284
285 285 std::shared_ptr<ArrayData<1> > m_XAxisData;
286 286 Unit m_XAxisUnit;
287 287 std::shared_ptr<ArrayData<Dim> > m_ValuesData;
288 288 Unit m_ValuesUnit;
289 289
290 290 QReadWriteLock m_Lock;
291 291 };
292 292
293 293 #endif // SCIQLOP_DATASERIES_H
@@ -1,164 +1,232
1 1 #include "Data/DataSeries.h"
2 2 #include "Data/ScalarSeries.h"
3 3
4 4 #include <QObject>
5 5 #include <QtTest>
6 6
7 7 Q_DECLARE_METATYPE(std::shared_ptr<ScalarSeries>)
8 8
9 9 class TestDataSeries : public QObject {
10 10 Q_OBJECT
11 11 private slots:
12 12 /// Input test data
13 13 /// @sa testCtor()
14 14 void testCtor_data();
15 15
16 16 /// Tests construction of a data series
17 17 void testCtor();
18 18
19 19 /// Input test data
20 20 /// @sa testMerge()
21 21 void testMerge_data();
22 22
23 23 /// Tests merge of two data series
24 24 void testMerge();
25
26 /// Input test data
27 /// @sa testSubdata()
28 void testSubdata_data();
29
30 /// Tests get subdata of two data series
31 void testSubdata();
25 32 };
26 33
27 34 void TestDataSeries::testCtor_data()
28 35 {
29 36 // ////////////// //
30 37 // Test structure //
31 38 // ////////////// //
32 39
33 40 // x-axis data
34 41 QTest::addColumn<QVector<double> >("xAxisData");
35 42 // values data
36 43 QTest::addColumn<QVector<double> >("valuesData");
37 44
38 45 // expected x-axis data
39 46 QTest::addColumn<QVector<double> >("expectedXAxisData");
40 47 // expected values data
41 48 QTest::addColumn<QVector<double> >("expectedValuesData");
42 49
43 50 // ////////// //
44 51 // Test cases //
45 52 // ////////// //
46 53
47 54 QTest::newRow("invalidData (different sizes of vectors)")
48 55 << QVector<double>{1., 2., 3., 4., 5.} << QVector<double>{100., 200., 300.}
49 56 << QVector<double>{} << QVector<double>{};
50 57
51 58 QTest::newRow("sortedData") << QVector<double>{1., 2., 3., 4., 5.}
52 59 << QVector<double>{100., 200., 300., 400., 500.}
53 60 << QVector<double>{1., 2., 3., 4., 5.}
54 61 << QVector<double>{100., 200., 300., 400., 500.};
55 62
56 63 QTest::newRow("unsortedData") << QVector<double>{5., 4., 3., 2., 1.}
57 64 << QVector<double>{100., 200., 300., 400., 500.}
58 65 << QVector<double>{1., 2., 3., 4., 5.}
59 66 << QVector<double>{500., 400., 300., 200., 100.};
60 67
61 68 QTest::newRow("unsortedData2")
62 69 << QVector<double>{1., 4., 3., 5., 2.} << QVector<double>{100., 200., 300., 400., 500.}
63 70 << QVector<double>{1., 2., 3., 4., 5.} << QVector<double>{100., 500., 300., 200., 400.};
64 71 }
65 72
66 73 void TestDataSeries::testCtor()
67 74 {
68 75 // Creates series
69 76 QFETCH(QVector<double>, xAxisData);
70 77 QFETCH(QVector<double>, valuesData);
71 78
72 79 auto series = std::make_shared<ScalarSeries>(std::move(xAxisData), std::move(valuesData),
73 80 Unit{}, Unit{});
74 81
75 82 // Validates results : we check that the data series is sorted on its x-axis data
76 83 QFETCH(QVector<double>, expectedXAxisData);
77 84 QFETCH(QVector<double>, expectedValuesData);
78 85
79 86 auto seriesXAxisData = series->xAxisData()->data();
80 87 auto seriesValuesData = series->valuesData()->data();
81 88
82 89 QVERIFY(
83 90 std::equal(expectedXAxisData.cbegin(), expectedXAxisData.cend(), seriesXAxisData.cbegin()));
84 91 QVERIFY(std::equal(expectedValuesData.cbegin(), expectedValuesData.cend(),
85 92 seriesValuesData.cbegin()));
86 93 }
87 94
88 95 namespace {
89 96
90 97 std::shared_ptr<ScalarSeries> createSeries(QVector<double> xAxisData, QVector<double> valuesData)
91 98 {
92 99 return std::make_shared<ScalarSeries>(std::move(xAxisData), std::move(valuesData), Unit{},
93 100 Unit{});
94 101 }
95 102
96 103 } // namespace
97 104
98 105 void TestDataSeries::testMerge_data()
99 106 {
100 107 // ////////////// //
101 108 // Test structure //
102 109 // ////////////// //
103 110
104 111 // Data series to merge
105 112 QTest::addColumn<std::shared_ptr<ScalarSeries> >("dataSeries");
106 113 QTest::addColumn<std::shared_ptr<ScalarSeries> >("dataSeries2");
107 114
108 115 // Expected values in the first data series after merge
109 116 QTest::addColumn<QVector<double> >("expectedXAxisData");
110 117 QTest::addColumn<QVector<double> >("expectedValuesData");
111 118
112 119 // ////////// //
113 120 // Test cases //
114 121 // ////////// //
115 122
116 123 QTest::newRow("sortedMerge")
117 124 << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
118 125 << createSeries({6., 7., 8., 9., 10.}, {600., 700., 800., 900., 1000.})
119 126 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
120 127 << QVector<double>{100., 200., 300., 400., 500., 600., 700., 800., 900., 1000.};
121 128
122 129 QTest::newRow("unsortedMerge")
123 130 << createSeries({6., 7., 8., 9., 10.}, {600., 700., 800., 900., 1000.})
124 131 << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
125 132 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
126 133 << QVector<double>{100., 200., 300., 400., 500., 600., 700., 800., 900., 1000.};
127 134
128 135 QTest::newRow("unsortedMerge2")
129 136 << createSeries({1., 2., 8., 9., 10}, {100., 200., 300., 400., 500.})
130 137 << createSeries({3., 4., 5., 6., 7.}, {600., 700., 800., 900., 1000.})
131 138 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
132 139 << QVector<double>{100., 200., 600., 700., 800., 900., 1000., 300., 400., 500.};
133 140
134 141 QTest::newRow("unsortedMerge3")
135 142 << createSeries({3., 5., 8., 7., 2}, {100., 200., 300., 400., 500.})
136 143 << createSeries({6., 4., 9., 10., 1.}, {600., 700., 800., 900., 1000.})
137 144 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
138 145 << QVector<double>{1000., 500., 100., 700., 200., 600., 400., 300., 800., 900.};
139 146 }
140 147
141 148 void TestDataSeries::testMerge()
142 149 {
143 150 // Merges series
144 151 QFETCH(std::shared_ptr<ScalarSeries>, dataSeries);
145 152 QFETCH(std::shared_ptr<ScalarSeries>, dataSeries2);
146 153
147 154 dataSeries->merge(dataSeries2.get());
148 155
149 156 // Validates results : we check that the merge is valid and the data series is sorted on its
150 157 // x-axis data
151 158 QFETCH(QVector<double>, expectedXAxisData);
152 159 QFETCH(QVector<double>, expectedValuesData);
153 160
154 161 auto seriesXAxisData = dataSeries->xAxisData()->data();
155 162 auto seriesValuesData = dataSeries->valuesData()->data();
156 163
157 164 QVERIFY(
158 165 std::equal(expectedXAxisData.cbegin(), expectedXAxisData.cend(), seriesXAxisData.cbegin()));
159 166 QVERIFY(std::equal(expectedValuesData.cbegin(), expectedValuesData.cend(),
160 167 seriesValuesData.cbegin()));
161 168 }
162 169
170 void TestDataSeries::testSubdata_data()
171 {
172 // ////////////// //
173 // Test structure //
174 // ////////////// //
175
176 // Data series to get subdata
177 QTest::addColumn<std::shared_ptr<ScalarSeries> >("dataSeries");
178
179 // Min/max values
180 QTest::addColumn<double>("min");
181 QTest::addColumn<double>("max");
182
183 // Expected values after subdata
184 QTest::addColumn<QVector<double> >("expectedXAxisData");
185 QTest::addColumn<QVector<double> >("expectedValuesData");
186
187 // ////////// //
188 // Test cases //
189 // ////////// //
190
191 QTest::newRow("subData1") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
192 << -1. << 3.2 << QVector<double>{1., 2., 3.}
193 << QVector<double>{100., 200., 300.};
194 QTest::newRow("subData2") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
195 << 1. << 4. << QVector<double>{1., 2., 3., 4.}
196 << QVector<double>{100., 200., 300., 400.};
197 QTest::newRow("subData3") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
198 << 1. << 3.9 << QVector<double>{1., 2., 3.}
199 << QVector<double>{100., 200., 300.};
200 QTest::newRow("subData4") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
201 << 0. << 0.9 << QVector<double>{} << QVector<double>{};
202 QTest::newRow("subData5") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
203 << 0. << 1. << QVector<double>{1.} << QVector<double>{100.};
204 QTest::newRow("subData6") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
205 << 2.1 << 6. << QVector<double>{3., 4., 5.}
206 << QVector<double>{300., 400., 500.};
207 QTest::newRow("subData7") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
208 << 6. << 9. << QVector<double>{} << QVector<double>{};
209 QTest::newRow("subData8") << createSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
210 << 5. << 9. << QVector<double>{5.} << QVector<double>{500.};
211 }
212
213 void TestDataSeries::testSubdata()
214 {
215 QFETCH(std::shared_ptr<ScalarSeries>, dataSeries);
216 QFETCH(double, min);
217 QFETCH(double, max);
218
219 QFETCH(QVector<double>, expectedXAxisData);
220 QFETCH(QVector<double>, expectedValuesData);
221
222 auto bounds = dataSeries->subData(min, max);
223 QVERIFY(std::equal(bounds.first, bounds.second, expectedXAxisData.cbegin(),
224 expectedXAxisData.cend(),
225 [](const auto &it, const auto &expectedX) { return it.x() == expectedX; }));
226 QVERIFY(std::equal(
227 bounds.first, bounds.second, expectedValuesData.cbegin(), expectedValuesData.cend(),
228 [](const auto &it, const auto &expectedVal) { return it.value() == expectedVal; }));
229 }
230
163 231 QTEST_MAIN(TestDataSeries)
164 232 #include "TestDataSeries.moc"
@@ -1,40 +1,39
1 1 #ifndef SCIQLOP_VISUALIZATIONGRAPHHELPER_H
2 2 #define SCIQLOP_VISUALIZATIONGRAPHHELPER_H
3 3
4 #include "Visualization/VisualizationDefs.h"
5
4 6 #include <Data/SqpRange.h>
5 7
6 8 #include <QLoggingCategory>
7 9 #include <QVector>
8 10
9 11 #include <memory>
10 12
11 13 Q_DECLARE_LOGGING_CATEGORY(LOG_VisualizationGraphHelper)
12 14
13 15 class IDataSeries;
14 16 class QCPAbstractPlottable;
15 17 class QCustomPlot;
16 18 class Variable;
17 19
18 20 /**
19 21 * @brief The VisualizationGraphHelper class aims to create the QCustomPlot components relative to a
20 22 * variable, depending on the data series of this variable
21 23 */
22 24 struct VisualizationGraphHelper {
23 25 /**
24 26 * Creates (if possible) the QCustomPlot components relative to the variable passed in
25 27 * parameter, and adds these to the plot passed in parameter.
26 28 * @param variable the variable for which to create the components
27 29 * @param plot the plot in which to add the created components. It takes ownership of these
28 30 * components.
29 31 * @return the list of the components created
30 32 */
31 static QVector<QCPAbstractPlottable *> create(std::shared_ptr<Variable> variable,
32 QCustomPlot &plot) noexcept;
33 static QVector<QCPAbstractPlottable *> createV2(std::shared_ptr<Variable> variable,
34 QCustomPlot &plot) noexcept;
33 static PlottablesMap create(std::shared_ptr<Variable> variable, QCustomPlot &plot) noexcept;
35 34
36 static void updateData(QVector<QCPAbstractPlottable *> plotableVect,
37 std::shared_ptr<IDataSeries> dataSeries, const SqpRange &dateTime);
35 static void updateData(PlottablesMap &plottables, std::shared_ptr<IDataSeries> dataSeries,
36 const SqpRange &dateTime);
38 37 };
39 38
40 39 #endif // SCIQLOP_VISUALIZATIONGRAPHHELPER_H
@@ -1,195 +1,240
1 1 #include "Visualization/VisualizationGraphHelper.h"
2 2 #include "Visualization/qcustomplot.h"
3 3
4 #include <Common/ColorUtils.h>
5
4 6 #include <Data/ScalarSeries.h>
7 #include <Data/VectorSeries.h>
5 8
6 9 #include <Variable/Variable.h>
7 10
8 11 Q_LOGGING_CATEGORY(LOG_VisualizationGraphHelper, "VisualizationGraphHelper")
9 12
10 13 namespace {
11 14
12 15 class SqpDataContainer : public QCPGraphDataContainer {
13 16 public:
14 17 void appendGraphData(const QCPGraphData &data) { mData.append(data); }
15 18 };
16 19
17 20
18 21 /// Format for datetimes on a axis
19 22 const auto DATETIME_TICKER_FORMAT = QStringLiteral("yyyy/MM/dd \nhh:mm:ss");
20 23
21 24 /// Generates the appropriate ticker for an axis, depending on whether the axis displays time or
22 25 /// non-time data
23 26 QSharedPointer<QCPAxisTicker> axisTicker(bool isTimeAxis)
24 27 {
25 28 if (isTimeAxis) {
26 29 auto dateTicker = QSharedPointer<QCPAxisTickerDateTime>::create();
27 30 dateTicker->setDateTimeFormat(DATETIME_TICKER_FORMAT);
28 31 dateTicker->setDateTimeSpec(Qt::UTC);
29 32
30 33 return dateTicker;
31 34 }
32 35 else {
33 36 // default ticker
34 37 return QSharedPointer<QCPAxisTicker>::create();
35 38 }
36 39 }
37 40
38 void updateScalarData(QCPAbstractPlottable *component, std::shared_ptr<ScalarSeries> scalarSeries,
39 const SqpRange &range)
41 /// Sets axes properties according to the properties of a data series
42 template <int Dim>
43 void setAxesProperties(const DataSeries<Dim> &dataSeries, QCustomPlot &plot) noexcept
40 44 {
41 qCDebug(LOG_VisualizationGraphHelper()) << "TORM: updateScalarData"
42 << QThread::currentThread()->objectName();
43 if (auto qcpGraph = dynamic_cast<QCPGraph *>(component)) {
44 scalarSeries->lockRead();
45 {
46 auto sqpDataContainer = QSharedPointer<SqpDataContainer>::create();
47 qcpGraph->setData(sqpDataContainer);
48 auto bounds = scalarSeries->subData(range.m_TStart, range.m_TEnd);
49 for (auto it = bounds.first; it != bounds.second; ++it) {
50 sqpDataContainer->appendGraphData(QCPGraphData(it->x(), it->value()));
51 }
52
53 qCInfo(LOG_VisualizationGraphHelper()) << "TODEBUG: Current points displayed"
54 << sqpDataContainer->size();
55 }
56 scalarSeries->unlock();
57
45 /// @todo : for the moment, no control is performed on the axes: the units and the tickers
46 /// are fixed for the default x-axis and y-axis of the plot, and according to the new graph
47 auto setAxisProperties = [](auto axis, const auto &unit) {
48 // label (unit name)
49 axis->setLabel(unit.m_Name);
50
51 // ticker (depending on the type of unit)
52 axis->setTicker(axisTicker(unit.m_TimeUnit));
53 };
54 setAxisProperties(plot.xAxis, dataSeries.xAxisUnit());
55 setAxisProperties(plot.yAxis, dataSeries.valuesUnit());
56 }
58 57
59 // Display all data
60 component->parentPlot()->replot();
61 }
62 else {
63 /// @todo DEBUG
58 /**
59 * Struct used to create plottables, depending on the type of the data series from which to create them
60 * @tparam T the data series' type
61 * @remarks Default implementation can't create plottables
62 */
63 template <typename T, typename Enabled = void>
64 struct PlottablesCreator {
65 static PlottablesMap createPlottables(T &, QCustomPlot &)
66 {
67 qCCritical(LOG_DataSeries())
68 << QObject::tr("Can't create plottables: unmanaged data series type");
69 return {};
64 70 }
65 }
71 };
66 72
67 QCPAbstractPlottable *createScalarSeriesComponentV2(std::shared_ptr<ScalarSeries> scalarSeries,
68 QCustomPlot &plot)
69 {
70 auto component = plot.addGraph();
73 /**
74 * Specialization of PlottablesCreator for scalars and vectors
75 * @sa ScalarSeries
76 * @sa VectorSeries
77 */
78 template <typename T>
79 struct PlottablesCreator<T,
80 typename std::enable_if_t<std::is_base_of<ScalarSeries, T>::value
81 or std::is_base_of<VectorSeries, T>::value> > {
82 static PlottablesMap createPlottables(T &dataSeries, QCustomPlot &plot)
83 {
84 PlottablesMap result{};
85
86 // Gets the number of components of the data series
87 auto componentCount = dataSeries.valuesData()->componentCount();
88
89 auto colors = ColorUtils::colors(Qt::blue, Qt::red, componentCount);
90
91 // For each component of the data series, creates a QCPGraph to add to the plot
92 for (auto i = 0; i < componentCount; ++i) {
93 auto graph = plot.addGraph();
94 graph->setPen(QPen{colors.at(i)});
95
96 result.insert({i, graph});
97 }
71 98
72 if (component) {
73 99 // Axes properties
74 /// @todo : for the moment, no control is performed on the axes: the units and the tickers
75 /// are fixed for the default x-axis and y-axis of the plot, and according to the new graph
76
77 auto setAxisProperties = [](auto axis, const auto &unit) {
78 // label (unit name)
79 axis->setLabel(unit.m_Name);
80
81 // ticker (depending on the type of unit)
82 axis->setTicker(axisTicker(unit.m_TimeUnit));
83 };
84 setAxisProperties(plot.xAxis, scalarSeries->xAxisUnit());
85 setAxisProperties(plot.yAxis, scalarSeries->valuesUnit());
100 setAxesProperties(dataSeries, plot);
101
102 plot.replot();
103
104 return result;
86 105 }
87 return component;
88 }
106 };
89 107
90 QCPAbstractPlottable *createScalarSeriesComponent(std::shared_ptr<ScalarSeries> scalarSeries,
91 QCustomPlot &plot, const SqpRange &dateTime)
92 {
93 auto component = plot.addGraph();
108 /**
109 * Struct used to update plottables, depending on the type of the data series from which to update them
110 * @tparam T the data series' type
111 * @remarks Default implementation can't update plottables
112 */
113 template <typename T, typename Enabled = void>
114 struct PlottablesUpdater {
115 static void updatePlottables(T &, PlottablesMap &, const SqpRange &, bool)
116 {
117 qCCritical(LOG_DataSeries())
118 << QObject::tr("Can't update plottables: unmanaged data series type");
119 }
120 };
94 121
95 if (component) {
96 // // Graph data
97 component->setData(scalarSeries->xAxisData()->data(), scalarSeries->valuesData()->data(),
98 true);
122 /**
123 * Specialization of PlottablesUpdater for scalars and vectors
124 * @sa ScalarSeries
125 * @sa VectorSeries
126 */
127 template <typename T>
128 struct PlottablesUpdater<T,
129 typename std::enable_if_t<std::is_base_of<ScalarSeries, T>::value
130 or std::is_base_of<VectorSeries, T>::value> > {
131 static void updatePlottables(T &dataSeries, PlottablesMap &plottables, const SqpRange &range,
132 bool rescaleAxes)
133 {
134 dataSeries.lockRead();
135
136 // For each plottable to update, resets its data
137 std::map<int, QSharedPointer<SqpDataContainer> > dataContainers{};
138 for (const auto &plottable : plottables) {
139 if (auto graph = dynamic_cast<QCPGraph *>(plottable.second)) {
140 auto dataContainer = QSharedPointer<SqpDataContainer>::create();
141 graph->setData(dataContainer);
142
143 dataContainers.insert({plottable.first, dataContainer});
144 }
145 }
99 146
100 updateScalarData(component, scalarSeries, dateTime);
147 // - Gets the data of the series included in the current range
148 // - Updates each plottable by adding, for each data item, a point that takes x-axis data and value data. The correct value is retrieved according to the index of the component
149 auto subDataIts = dataSeries.subData(range.m_TStart, range.m_TEnd);
150 for (auto it = subDataIts.first; it != subDataIts.second; ++it) {
151 for (const auto &dataContainer : dataContainers) {
152 auto componentIndex = dataContainer.first;
153 dataContainer.second->appendGraphData(
154 QCPGraphData(it->x(), it->value(componentIndex)));
155 }
156 }
101 157
102 // Axes properties
103 /// @todo : for the moment, no control is performed on the axes: the units and the tickers
104 /// are fixed for the default x-axis and y-axis of the plot, and according to the new graph
158 dataSeries.unlock();
105 159
106 auto setAxisProperties = [](auto axis, const auto &unit) {
107 // label (unit name)
108 axis->setLabel(unit.m_Name);
160 if (!plottables.empty()) {
161 auto plot = plottables.begin()->second->parentPlot();
109 162
110 // ticker (depending on the type of unit)
111 axis->setTicker(axisTicker(unit.m_TimeUnit));
112 };
113 setAxisProperties(plot.xAxis, scalarSeries->xAxisUnit());
114 setAxisProperties(plot.yAxis, scalarSeries->valuesUnit());
163 if (rescaleAxes) {
164 plot->rescaleAxes();
165 }
115 166
116 // Display all data
117 component->rescaleAxes();
118 plot.replot();
167 plot->replot();
168 }
119 169 }
120 else {
121 qCDebug(LOG_VisualizationGraphHelper())
122 << QObject::tr("Can't create graph for the scalar series");
170 };
171
172 /**
173 * Helper used to create/update plottables
174 */
175 struct IPlottablesHelper {
176 virtual ~IPlottablesHelper() noexcept = default;
177 virtual PlottablesMap create(QCustomPlot &plot) const = 0;
178 virtual void update(PlottablesMap &plottables, const SqpRange &range,
179 bool rescaleAxes = false) const = 0;
180 };
181
182 /**
183 * Default implementation of IPlottablesHelper, which takes data series to create/update plottables
184 * @tparam T the data series' type
185 */
186 template <typename T>
187 struct PlottablesHelper : public IPlottablesHelper {
188 explicit PlottablesHelper(T &dataSeries) : m_DataSeries{dataSeries} {}
189
190 PlottablesMap create(QCustomPlot &plot) const override
191 {
192 return PlottablesCreator<T>::createPlottables(m_DataSeries, plot);
123 193 }
124 194
125 return component;
126 }
195 void update(PlottablesMap &plottables, const SqpRange &range, bool rescaleAxes) const override
196 {
197 PlottablesUpdater<T>::updatePlottables(m_DataSeries, plottables, range, rescaleAxes);
198 }
127 199
128 } // namespace
200 T &m_DataSeries;
201 };
129 202
130 QVector<QCPAbstractPlottable *>
131 VisualizationGraphHelper::createV2(std::shared_ptr<Variable> variable, QCustomPlot &plot) noexcept
203 /// Creates IPlottablesHelper according to a data series
204 std::unique_ptr<IPlottablesHelper> createHelper(std::shared_ptr<IDataSeries> dataSeries) noexcept
132 205 {
133 auto result = QVector<QCPAbstractPlottable *>{};
134
135 if (variable) {
136 // Gets the data series of the variable to call the creation of the right components
137 // according to its type
138 if (auto scalarSeries = std::dynamic_pointer_cast<ScalarSeries>(variable->dataSeries())) {
139 result.append(createScalarSeriesComponentV2(scalarSeries, plot));
140 }
141 else {
142 qCDebug(LOG_VisualizationGraphHelper())
143 << QObject::tr("Can't create graph plottables : unmanaged data series type");
144 }
206 if (auto scalarSeries = std::dynamic_pointer_cast<ScalarSeries>(dataSeries)) {
207 return std::make_unique<PlottablesHelper<ScalarSeries> >(*scalarSeries);
208 }
209 else if (auto vectorSeries = std::dynamic_pointer_cast<VectorSeries>(dataSeries)) {
210 return std::make_unique<PlottablesHelper<VectorSeries> >(*vectorSeries);
145 211 }
146 212 else {
147 qCDebug(LOG_VisualizationGraphHelper())
148 << QObject::tr("Can't create graph plottables : the variable is null");
213 return std::make_unique<PlottablesHelper<IDataSeries> >(*dataSeries);
149 214 }
150
151 return result;
152 215 }
153 216
154 QVector<QCPAbstractPlottable *> VisualizationGraphHelper::create(std::shared_ptr<Variable> variable,
155 QCustomPlot &plot) noexcept
156 {
157 auto result = QVector<QCPAbstractPlottable *>{};
217 } // namespace
158 218
219 PlottablesMap VisualizationGraphHelper::create(std::shared_ptr<Variable> variable,
220 QCustomPlot &plot) noexcept
221 {
159 222 if (variable) {
160 // Gets the data series of the variable to call the creation of the right components
161 // according to its type
162 if (auto scalarSeries = std::dynamic_pointer_cast<ScalarSeries>(variable->dataSeries())) {
163 result.append(createScalarSeriesComponent(scalarSeries, plot, variable->range()));
164 }
165 else {
166 qCDebug(LOG_VisualizationGraphHelper())
167 << QObject::tr("Can't create graph plottables : unmanaged data series type");
168 }
223 auto helper = createHelper(variable->dataSeries());
224 auto plottables = helper->create(plot);
225 return plottables;
169 226 }
170 227 else {
171 228 qCDebug(LOG_VisualizationGraphHelper())
172 229 << QObject::tr("Can't create graph plottables : the variable is null");
230 return PlottablesMap{};
173 231 }
174
175 return result;
176 232 }
177 233
178 void VisualizationGraphHelper::updateData(QVector<QCPAbstractPlottable *> plotableVect,
234 void VisualizationGraphHelper::updateData(PlottablesMap &plottables,
179 235 std::shared_ptr<IDataSeries> dataSeries,
180 236 const SqpRange &dateTime)
181 237 {
182 if (auto scalarSeries = std::dynamic_pointer_cast<ScalarSeries>(dataSeries)) {
183 if (plotableVect.size() == 1) {
184 updateScalarData(plotableVect.at(0), scalarSeries, dateTime);
185 }
186 else {
187 qCCritical(LOG_VisualizationGraphHelper()) << QObject::tr(
188 "Can't update Data of a scalarSeries because there is not only one component "
189 "associated");
190 }
191 }
192 else {
193 /// @todo DEBUG
194 }
238 auto helper = createHelper(dataSeries);
239 helper->update(plottables, dateTime);
195 240 }
@@ -1,320 +1,313
1 1 #include "Visualization/VisualizationGraphWidget.h"
2 2 #include "Visualization/IVisualizationWidgetVisitor.h"
3 #include "Visualization/VisualizationDefs.h"
3 4 #include "Visualization/VisualizationGraphHelper.h"
4 5 #include "Visualization/VisualizationGraphRenderingDelegate.h"
5 6 #include "ui_VisualizationGraphWidget.h"
6 7
7 8 #include <Data/ArrayData.h>
8 9 #include <Data/IDataSeries.h>
9 10 #include <Settings/SqpSettingsDefs.h>
10 11 #include <SqpApplication.h>
11 12 #include <Variable/Variable.h>
12 13 #include <Variable/VariableController.h>
13 14
14 15 #include <unordered_map>
15 16
16 17 Q_LOGGING_CATEGORY(LOG_VisualizationGraphWidget, "VisualizationGraphWidget")
17 18
18 19 namespace {
19 20
20 21 /// Key pressed to enable zoom on horizontal axis
21 22 const auto HORIZONTAL_ZOOM_MODIFIER = Qt::NoModifier;
22 23
23 24 /// Key pressed to enable zoom on vertical axis
24 25 const auto VERTICAL_ZOOM_MODIFIER = Qt::ControlModifier;
25 26
26 27 } // namespace
27 28
28 29 struct VisualizationGraphWidget::VisualizationGraphWidgetPrivate {
29 30
30 31 explicit VisualizationGraphWidgetPrivate()
31 32 : m_DoAcquisition{true}, m_IsCalibration{false}, m_RenderingDelegate{nullptr}
32 33 {
33 34 }
34 35
35 36 // 1 variable -> n qcpplot
36 std::multimap<std::shared_ptr<Variable>, QCPAbstractPlottable *> m_VariableToPlotMultiMap;
37 std::map<std::shared_ptr<Variable>, PlottablesMap> m_VariableToPlotMultiMap;
37 38 bool m_DoAcquisition;
38 39 bool m_IsCalibration;
39 40 QCPItemTracer *m_TextTracer;
40 41 /// Delegate used to attach rendering features to the plot
41 42 std::unique_ptr<VisualizationGraphRenderingDelegate> m_RenderingDelegate;
42 43 };
43 44
44 45 VisualizationGraphWidget::VisualizationGraphWidget(const QString &name, QWidget *parent)
45 46 : QWidget{parent},
46 47 ui{new Ui::VisualizationGraphWidget},
47 48 impl{spimpl::make_unique_impl<VisualizationGraphWidgetPrivate>()}
48 49 {
49 50 ui->setupUi(this);
50 51
51 52 // The delegate must be initialized after the ui as it uses the plot
52 53 impl->m_RenderingDelegate = std::make_unique<VisualizationGraphRenderingDelegate>(*ui->widget);
53 54
54 55 ui->graphNameLabel->setText(name);
55 56
56 57 // 'Close' options : widget is deleted when closed
57 58 setAttribute(Qt::WA_DeleteOnClose);
58 59 connect(ui->closeButton, &QToolButton::clicked, this, &VisualizationGraphWidget::close);
59 60 ui->closeButton->setIcon(sqpApp->style()->standardIcon(QStyle::SP_TitleBarCloseButton));
60 61
61 62 // Set qcpplot properties :
62 63 // - Drag (on x-axis) and zoom are enabled
63 64 // - Mouse wheel on qcpplot is intercepted to determine the zoom orientation
64 65 ui->widget->setInteractions(QCP::iRangeDrag | QCP::iRangeZoom);
65 66 ui->widget->axisRect()->setRangeDrag(Qt::Horizontal);
66 67
67 68 connect(ui->widget, &QCustomPlot::mousePress, this, &VisualizationGraphWidget::onMousePress);
68 69 connect(ui->widget, &QCustomPlot::mouseRelease, this,
69 70 &VisualizationGraphWidget::onMouseRelease);
70 71 connect(ui->widget, &QCustomPlot::mouseMove, this, &VisualizationGraphWidget::onMouseMove);
71 72 connect(ui->widget, &QCustomPlot::mouseWheel, this, &VisualizationGraphWidget::onMouseWheel);
72 73 connect(ui->widget->xAxis, static_cast<void (QCPAxis::*)(const QCPRange &, const QCPRange &)>(
73 74 &QCPAxis::rangeChanged),
74 75 this, &VisualizationGraphWidget::onRangeChanged, Qt::DirectConnection);
75 76
76 77 // Activates menu when right clicking on the graph
77 78 ui->widget->setContextMenuPolicy(Qt::CustomContextMenu);
78 79 connect(ui->widget, &QCustomPlot::customContextMenuRequested, this,
79 80 &VisualizationGraphWidget::onGraphMenuRequested);
80 81
81 82 connect(this, &VisualizationGraphWidget::requestDataLoading, &sqpApp->variableController(),
82 83 &VariableController::onRequestDataLoading);
83 84
84 85 connect(&sqpApp->variableController(), &VariableController::updateVarDisplaying, this,
85 86 &VisualizationGraphWidget::onUpdateVarDisplaying);
86 87 }
87 88
88 89
89 90 VisualizationGraphWidget::~VisualizationGraphWidget()
90 91 {
91 92 delete ui;
92 93 }
93 94
94 95 void VisualizationGraphWidget::enableAcquisition(bool enable)
95 96 {
96 97 impl->m_DoAcquisition = enable;
97 98 }
98 99
99 100 void VisualizationGraphWidget::addVariable(std::shared_ptr<Variable> variable, SqpRange range)
100 101 {
101 102 // Uses delegate to create the qcpplot components according to the variable
102 auto createdPlottables = VisualizationGraphHelper::createV2(variable, *ui->widget);
103
104 for (auto createdPlottable : qAsConst(createdPlottables)) {
105 impl->m_VariableToPlotMultiMap.insert({variable, createdPlottable});
106 }
103 auto createdPlottables = VisualizationGraphHelper::create(variable, *ui->widget);
104 impl->m_VariableToPlotMultiMap.insert({variable, std::move(createdPlottables)});
107 105
108 106 connect(variable.get(), SIGNAL(updated()), this, SLOT(onDataCacheVariableUpdated()));
109 107
110 108 auto varRange = variable->range();
111 109
112 110 this->enableAcquisition(false);
113 111 this->setGraphRange(range);
114 112 this->enableAcquisition(true);
115 113
116 114 emit requestDataLoading(QVector<std::shared_ptr<Variable> >() << variable, range, varRange,
117 115 false);
118 116
119 117 emit variableAdded(variable);
120 118 }
121 119
122 120 void VisualizationGraphWidget::removeVariable(std::shared_ptr<Variable> variable) noexcept
123 121 {
124 122 // Each component associated to the variable :
125 123 // - is removed from qcpplot (which deletes it)
126 124 // - is no longer referenced in the map
127 auto componentsIt = impl->m_VariableToPlotMultiMap.equal_range(variable);
128 for (auto it = componentsIt.first; it != componentsIt.second;) {
129 ui->widget->removePlottable(it->second);
130 it = impl->m_VariableToPlotMultiMap.erase(it);
125 auto variableIt = impl->m_VariableToPlotMultiMap.find(variable);
126 if (variableIt != impl->m_VariableToPlotMultiMap.cend()) {
127 auto &plottablesMap = variableIt->second;
128
129 for (auto plottableIt = plottablesMap.cbegin(), plottableEnd = plottablesMap.cend();
130 plottableIt != plottableEnd;) {
131 ui->widget->removePlottable(plottableIt->second);
132 plottableIt = plottablesMap.erase(plottableIt);
133 }
134
135 impl->m_VariableToPlotMultiMap.erase(variableIt);
131 136 }
132 137
133 138 // Updates graph
134 139 ui->widget->replot();
135 140 }
136 141
137 142 void VisualizationGraphWidget::setRange(std::shared_ptr<Variable> variable, const SqpRange &range)
138 143 {
139 144 // Note: in case of different axes that depends on variable, we could start with a code like
140 145 // that:
141 146 // auto componentsIt = impl->m_VariableToPlotMultiMap.equal_range(variable);
142 147 // for (auto it = componentsIt.first; it != componentsIt.second;) {
143 148 // }
144 149 ui->widget->xAxis->setRange(range.m_TStart, range.m_TEnd);
145 150 ui->widget->replot();
146 151 }
147 152
148 153 void VisualizationGraphWidget::setYRange(const SqpRange &range)
149 154 {
150 155 ui->widget->yAxis->setRange(range.m_TStart, range.m_TEnd);
151 156 }
152 157
153 158 SqpRange VisualizationGraphWidget::graphRange() const noexcept
154 159 {
155 160 auto graphRange = ui->widget->xAxis->range();
156 161 return SqpRange{graphRange.lower, graphRange.upper};
157 162 }
158 163
159 164 void VisualizationGraphWidget::setGraphRange(const SqpRange &range)
160 165 {
161 166 qCDebug(LOG_VisualizationGraphWidget()) << tr("VisualizationGraphWidget::setGraphRange START");
162 167 ui->widget->xAxis->setRange(range.m_TStart, range.m_TEnd);
163 168 ui->widget->replot();
164 169 qCDebug(LOG_VisualizationGraphWidget()) << tr("VisualizationGraphWidget::setGraphRange END");
165 170 }
166 171
167 172 void VisualizationGraphWidget::accept(IVisualizationWidgetVisitor *visitor)
168 173 {
169 174 if (visitor) {
170 175 visitor->visit(this);
171 176 }
172 177 else {
173 178 qCCritical(LOG_VisualizationGraphWidget())
174 179 << tr("Can't visit widget : the visitor is null");
175 180 }
176 181 }
177 182
178 183 bool VisualizationGraphWidget::canDrop(const Variable &variable) const
179 184 {
180 185 /// @todo : for the moment, a graph can always accomodate a variable
181 186 Q_UNUSED(variable);
182 187 return true;
183 188 }
184 189
185 190 bool VisualizationGraphWidget::contains(const Variable &variable) const
186 191 {
187 192 // Finds the variable among the keys of the map
188 193 auto variablePtr = &variable;
189 194 auto findVariable
190 195 = [variablePtr](const auto &entry) { return variablePtr == entry.first.get(); };
191 196
192 197 auto end = impl->m_VariableToPlotMultiMap.cend();
193 198 auto it = std::find_if(impl->m_VariableToPlotMultiMap.cbegin(), end, findVariable);
194 199 return it != end;
195 200 }
196 201
197 202 QString VisualizationGraphWidget::name() const
198 203 {
199 204 return ui->graphNameLabel->text();
200 205 }
201 206
202 207 void VisualizationGraphWidget::onGraphMenuRequested(const QPoint &pos) noexcept
203 208 {
204 209 QMenu graphMenu{};
205 210
206 211 // Iterates on variables (unique keys)
207 212 for (auto it = impl->m_VariableToPlotMultiMap.cbegin(),
208 213 end = impl->m_VariableToPlotMultiMap.cend();
209 214 it != end; it = impl->m_VariableToPlotMultiMap.upper_bound(it->first)) {
210 215 // 'Remove variable' action
211 216 graphMenu.addAction(tr("Remove variable %1").arg(it->first->name()),
212 217 [ this, var = it->first ]() { removeVariable(var); });
213 218 }
214 219
215 220 if (!graphMenu.isEmpty()) {
216 221 graphMenu.exec(mapToGlobal(pos));
217 222 }
218 223 }
219 224
220 225 void VisualizationGraphWidget::onRangeChanged(const QCPRange &t1, const QCPRange &t2)
221 226 {
222 227 qCDebug(LOG_VisualizationGraphWidget()) << tr("TORM: VisualizationGraphWidget::onRangeChanged")
223 228 << QThread::currentThread()->objectName() << "DoAcqui"
224 229 << impl->m_DoAcquisition;
225 230
226 231 auto graphRange = SqpRange{t1.lower, t1.upper};
227 232 auto oldGraphRange = SqpRange{t2.lower, t2.upper};
228 233
229 234 if (impl->m_DoAcquisition) {
230 235 QVector<std::shared_ptr<Variable> > variableUnderGraphVector;
231 236
232 237 for (auto it = impl->m_VariableToPlotMultiMap.begin(),
233 238 end = impl->m_VariableToPlotMultiMap.end();
234 239 it != end; it = impl->m_VariableToPlotMultiMap.upper_bound(it->first)) {
235 240 variableUnderGraphVector.push_back(it->first);
236 241 }
237 242 emit requestDataLoading(std::move(variableUnderGraphVector), graphRange, oldGraphRange,
238 243 !impl->m_IsCalibration);
239 244
240 245 if (!impl->m_IsCalibration) {
241 246 qCDebug(LOG_VisualizationGraphWidget())
242 247 << tr("TORM: VisualizationGraphWidget::Synchronize notify !!")
243 248 << QThread::currentThread()->objectName() << graphRange << oldGraphRange;
244 249 emit synchronize(graphRange, oldGraphRange);
245 250 }
246 251 }
247 252 }
248 253
249 254 void VisualizationGraphWidget::onMouseMove(QMouseEvent *event) noexcept
250 255 {
251 256 // Handles plot rendering when mouse is moving
252 257 impl->m_RenderingDelegate->onMouseMove(event);
253 258 }
254 259
255 260 void VisualizationGraphWidget::onMouseWheel(QWheelEvent *event) noexcept
256 261 {
257 262 auto zoomOrientations = QFlags<Qt::Orientation>{};
258 263
259 264 // Lambda that enables a zoom orientation if the key modifier related to this orientation
260 265 // has
261 266 // been pressed
262 267 auto enableOrientation
263 268 = [&zoomOrientations, event](const auto &orientation, const auto &modifier) {
264 269 auto orientationEnabled = event->modifiers().testFlag(modifier);
265 270 zoomOrientations.setFlag(orientation, orientationEnabled);
266 271 };
267 272 enableOrientation(Qt::Vertical, VERTICAL_ZOOM_MODIFIER);
268 273 enableOrientation(Qt::Horizontal, HORIZONTAL_ZOOM_MODIFIER);
269 274
270 275 ui->widget->axisRect()->setRangeZoom(zoomOrientations);
271 276 }
272 277
273 278 void VisualizationGraphWidget::onMousePress(QMouseEvent *event) noexcept
274 279 {
275 280 impl->m_IsCalibration = event->modifiers().testFlag(Qt::ControlModifier);
276 281 }
277 282
278 283 void VisualizationGraphWidget::onMouseRelease(QMouseEvent *event) noexcept
279 284 {
280 285 impl->m_IsCalibration = false;
281 286 }
282 287
283 288 void VisualizationGraphWidget::onDataCacheVariableUpdated()
284 289 {
285 // NOTE:
286 // We don't want to call the method for each component of a variable unitarily, but for
287 // all
288 // its components at once (eg its three components in the case of a vector).
289
290 // The unordered_multimap does not do this easily, so the question is whether to:
291 // - use an ordered_multimap and the algos of std to group the values by key
292 // - use a map (unique keys) and store as values directly the list of components
293
294 290 auto graphRange = ui->widget->xAxis->range();
295 291 auto dateTime = SqpRange{graphRange.lower, graphRange.upper};
296 292
297 for (auto it = impl->m_VariableToPlotMultiMap.cbegin();
298 it != impl->m_VariableToPlotMultiMap.cend(); ++it) {
299 auto variable = it->first;
293 for (auto &variableEntry : impl->m_VariableToPlotMultiMap) {
294 auto variable = variableEntry.first;
300 295 qCDebug(LOG_VisualizationGraphWidget())
301 296 << "TORM: VisualizationGraphWidget::onDataCacheVariableUpdated S" << variable->range();
302 297 qCDebug(LOG_VisualizationGraphWidget())
303 298 << "TORM: VisualizationGraphWidget::onDataCacheVariableUpdated E" << dateTime;
304 299 if (dateTime.contains(variable->range()) || dateTime.intersect(variable->range())) {
305
306 VisualizationGraphHelper::updateData(QVector<QCPAbstractPlottable *>{} << it->second,
307 variable->dataSeries(), variable->range());
300 VisualizationGraphHelper::updateData(variableEntry.second, variable->dataSeries(),
301 variable->range());
308 302 }
309 303 }
310 304 }
311 305
312 306 void VisualizationGraphWidget::onUpdateVarDisplaying(std::shared_ptr<Variable> variable,
313 307 const SqpRange &range)
314 308 {
315 auto componentsIt = impl->m_VariableToPlotMultiMap.equal_range(variable);
316 for (auto it = componentsIt.first; it != componentsIt.second;) {
317 VisualizationGraphHelper::updateData(QVector<QCPAbstractPlottable *>{} << it->second,
318 variable->dataSeries(), range);
309 auto it = impl->m_VariableToPlotMultiMap.find(variable);
310 if (it != impl->m_VariableToPlotMultiMap.end()) {
311 VisualizationGraphHelper::updateData(it->second, variable->dataSeries(), range);
319 312 }
320 313 }
General Comments 0
You need to be logged in to leave comments. Login now