@@ -1,185 +1,227 | |||||
1 | #ifndef SCIQLOP_DATASERIESUTILS_H |
|
1 | #ifndef SCIQLOP_DATASERIESUTILS_H | |
2 | #define SCIQLOP_DATASERIESUTILS_H |
|
2 | #define SCIQLOP_DATASERIESUTILS_H | |
3 |
|
3 | |||
4 | #include "CoreGlobal.h" |
|
4 | #include "CoreGlobal.h" | |
5 |
|
5 | |||
|
6 | #include <Data/DataSeriesIterator.h> | |||
|
7 | ||||
6 | #include <QLoggingCategory> |
|
8 | #include <QLoggingCategory> | |
7 |
|
9 | |||
8 | Q_DECLARE_LOGGING_CATEGORY(LOG_DataSeriesUtils) |
|
10 | Q_DECLARE_LOGGING_CATEGORY(LOG_DataSeriesUtils) | |
9 |
|
11 | |||
10 | /** |
|
12 | /** | |
11 | * Utility class with methods for data series |
|
13 | * Utility class with methods for data series | |
12 | */ |
|
14 | */ | |
13 | struct SCIQLOP_CORE_EXPORT DataSeriesUtils { |
|
15 | struct SCIQLOP_CORE_EXPORT DataSeriesUtils { | |
14 | /** |
|
16 | /** | |
15 | * Define a meshs. |
|
17 | * Define a meshs. | |
16 | * |
|
18 | * | |
17 | * A mesh is a regular grid representing cells of the same width (in x) and of the same height |
|
19 | * A mesh is a regular grid representing cells of the same width (in x) and of the same height | |
18 | * (in y). At each mesh point is associated a value. |
|
20 | * (in y). At each mesh point is associated a value. | |
19 | * |
|
21 | * | |
20 | * Each axis of the mesh is defined by a minimum value, a number of values is a mesh step. |
|
22 | * Each axis of the mesh is defined by a minimum value, a number of values is a mesh step. | |
21 | * For example: if min = 1, nbValues = 5 and step = 2 => the axis of the mesh will be [1, 3, 5, |
|
23 | * For example: if min = 1, nbValues = 5 and step = 2 => the axis of the mesh will be [1, 3, 5, | |
22 | * 7, 9]. |
|
24 | * 7, 9]. | |
23 | * |
|
25 | * | |
24 | * The values are defined in an array of size {nbX * nbY}. The data is stored along the X axis. |
|
26 | * The values are defined in an array of size {nbX * nbY}. The data is stored along the X axis. | |
25 | * |
|
27 | * | |
26 | * For example, the mesh: |
|
28 | * For example, the mesh: | |
27 | * Y = 2 [ 7 ; 8 ; 9 |
|
29 | * Y = 2 [ 7 ; 8 ; 9 | |
28 | * Y = 1 4 ; 5 ; 6 |
|
30 | * Y = 1 4 ; 5 ; 6 | |
29 | * Y = 0 1 ; 2 ; 3 ] |
|
31 | * Y = 0 1 ; 2 ; 3 ] | |
30 | * X = 0 X = 1 X = 2 |
|
32 | * X = 0 X = 1 X = 2 | |
31 | * |
|
33 | * | |
32 | * will be represented by data [1, 2, 3, 4, 5, 6, 7, 8, 9] |
|
34 | * will be represented by data [1, 2, 3, 4, 5, 6, 7, 8, 9] | |
33 | */ |
|
35 | */ | |
34 | struct Mesh { |
|
36 | struct Mesh { | |
35 | explicit Mesh() = default; |
|
37 | explicit Mesh() = default; | |
36 | explicit Mesh(int nbX, double xMin, double xStep, int nbY, double yMin, double yStep) |
|
38 | explicit Mesh(int nbX, double xMin, double xStep, int nbY, double yMin, double yStep) | |
37 | : m_NbX{nbX}, |
|
39 | : m_NbX{nbX}, | |
38 | m_XMin{xMin}, |
|
40 | m_XMin{xMin}, | |
39 | m_XStep{xStep}, |
|
41 | m_XStep{xStep}, | |
40 | m_NbY{nbY}, |
|
42 | m_NbY{nbY}, | |
41 | m_YMin{yMin}, |
|
43 | m_YMin{yMin}, | |
42 | m_YStep{yStep}, |
|
44 | m_YStep{yStep}, | |
43 | m_Data(nbX * nbY) |
|
45 | m_Data(nbX * nbY) | |
44 | { |
|
46 | { | |
45 | } |
|
47 | } | |
46 |
|
48 | |||
47 | inline bool isEmpty() const { return m_Data.size() == 0; } |
|
49 | inline bool isEmpty() const { return m_Data.size() == 0; } | |
48 | inline double xMax() const { return m_XMin + (m_NbX - 1) * m_XStep; } |
|
50 | inline double xMax() const { return m_XMin + (m_NbX - 1) * m_XStep; } | |
49 | inline double yMax() const { return m_YMin + (m_NbY - 1) * m_YStep; } |
|
51 | inline double yMax() const { return m_YMin + (m_NbY - 1) * m_YStep; } | |
50 |
|
52 | |||
51 | int m_NbX{0}; |
|
53 | int m_NbX{0}; | |
52 | double m_XMin{}; |
|
54 | double m_XMin{}; | |
53 | double m_XStep{}; |
|
55 | double m_XStep{}; | |
54 | int m_NbY{0}; |
|
56 | int m_NbY{0}; | |
55 | double m_YMin{}; |
|
57 | double m_YMin{}; | |
56 | double m_YStep{}; |
|
58 | double m_YStep{}; | |
57 | std::vector<double> m_Data{}; |
|
59 | std::vector<double> m_Data{}; | |
58 | }; |
|
60 | }; | |
59 |
|
61 | |||
60 | /** |
|
62 | /** | |
61 | * Represents a resolution used to generate the data of a mesh on the x-axis or in Y. |
|
63 | * Represents a resolution used to generate the data of a mesh on the x-axis or in Y. | |
62 | * |
|
64 | * | |
63 | * A resolution is represented by a value and flag indicating if it's in the logarithmic scale |
|
65 | * A resolution is represented by a value and flag indicating if it's in the logarithmic scale | |
64 | * @sa Mesh |
|
66 | * @sa Mesh | |
65 | */ |
|
67 | */ | |
66 | struct Resolution { |
|
68 | struct Resolution { | |
67 | double m_Val{std::numeric_limits<double>::quiet_NaN()}; |
|
69 | double m_Val{std::numeric_limits<double>::quiet_NaN()}; | |
68 | bool m_Logarithmic{false}; |
|
70 | bool m_Logarithmic{false}; | |
69 | }; |
|
71 | }; | |
70 |
|
72 | |||
71 | /** |
|
73 | /** | |
72 | * Processes data from a data series to complete the data holes with a fill value. |
|
74 | * Processes data from a data series to complete the data holes with a fill value. | |
73 | * |
|
75 | * | |
74 | * A data hole is determined by the resolution passed in parameter: if, between two continuous |
|
76 | * A data hole is determined by the resolution passed in parameter: if, between two continuous | |
75 | * data on the x-axis, the difference between these data is greater than the resolution, then |
|
77 | * data on the x-axis, the difference between these data is greater than the resolution, then | |
76 | * there is one or more holes between them. The holes are filled by adding: |
|
78 | * there is one or more holes between them. The holes are filled by adding: | |
77 | * - for the x-axis, new data corresponding to the 'step resolution' starting from the first |
|
79 | * - for the x-axis, new data corresponding to the 'step resolution' starting from the first | |
78 | * data; |
|
80 | * data; | |
79 | * - for values, a default value (fill value) for each new data added on the x-axis. |
|
81 | * - for values, a default value (fill value) for each new data added on the x-axis. | |
80 | * |
|
82 | * | |
81 | * For example, with : |
|
83 | * For example, with : | |
82 | * - xAxisData = [0, 1, 5, 7, 14 ] |
|
84 | * - xAxisData = [0, 1, 5, 7, 14 ] | |
83 | * - valuesData = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (two components per x-axis data) |
|
85 | * - valuesData = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (two components per x-axis data) | |
84 | * - fillValue = NaN |
|
86 | * - fillValue = NaN | |
85 | * - and resolution = 2; |
|
87 | * - and resolution = 2; | |
86 | * |
|
88 | * | |
87 | * For the x axis, we calculate as data holes: [3, 9, 11, 13]. These holes are added to the |
|
89 | * For the x axis, we calculate as data holes: [3, 9, 11, 13]. These holes are added to the | |
88 | * x-axis data, and NaNs (two per x-axis data) are added to the values: |
|
90 | * x-axis data, and NaNs (two per x-axis data) are added to the values: | |
89 | * => xAxisData = [0, 1, 3, 5, 7, 9, 11, 13, 14 ] |
|
91 | * => xAxisData = [0, 1, 3, 5, 7, 9, 11, 13, 14 ] | |
90 | * => valuesData = [0, 1, 2, 3, NaN, NaN, 4, 5, 6, 7, NaN, NaN, NaN, NaN, NaN, NaN, 8, 9] |
|
92 | * => valuesData = [0, 1, 2, 3, NaN, NaN, 4, 5, 6, 7, NaN, NaN, NaN, NaN, NaN, NaN, 8, 9] | |
91 | * |
|
93 | * | |
92 | * It is also possible to set bounds for the data series. If these bounds are defined and exceed |
|
94 | * It is also possible to set bounds for the data series. If these bounds are defined and exceed | |
93 | * the limits of the data series, data holes are added to the series at the beginning and/or the |
|
95 | * the limits of the data series, data holes are added to the series at the beginning and/or the | |
94 | * end. |
|
96 | * end. | |
95 | * |
|
97 | * | |
96 | * The generation of data holes at the beginning/end of the data series is performed starting |
|
98 | * The generation of data holes at the beginning/end of the data series is performed starting | |
97 | * from the x-axis series limit and adding data holes at each 'resolution step' as long as the |
|
99 | * from the x-axis series limit and adding data holes at each 'resolution step' as long as the | |
98 | * new bound is not reached. |
|
100 | * new bound is not reached. | |
99 | * |
|
101 | * | |
100 | * For example, with : |
|
102 | * For example, with : | |
101 | * - xAxisData = [3, 4, 5, 6, 7 ] |
|
103 | * - xAxisData = [3, 4, 5, 6, 7 ] | |
102 | * - valuesData = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] |
|
104 | * - valuesData = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | |
103 | * - fillValue = NaN |
|
105 | * - fillValue = NaN | |
104 | * - minBound = 0 |
|
106 | * - minBound = 0 | |
105 | * - maxBound = 12 |
|
107 | * - maxBound = 12 | |
106 | * - and resolution = 2; |
|
108 | * - and resolution = 2; | |
107 | * |
|
109 | * | |
108 | * => Starting from 3 and decreasing 2 by 2 until reaching 0 : a data hole at value 1 will be |
|
110 | * => Starting from 3 and decreasing 2 by 2 until reaching 0 : a data hole at value 1 will be | |
109 | * added to the beginning of the series |
|
111 | * added to the beginning of the series | |
110 | * => Starting from 7 and increasing 2 by 2 until reaching 12 : data holes at values 9 and 11 |
|
112 | * => Starting from 7 and increasing 2 by 2 until reaching 12 : data holes at values 9 and 11 | |
111 | * will be added to the end of the series |
|
113 | * will be added to the end of the series | |
112 | * |
|
114 | * | |
113 | * So : |
|
115 | * So : | |
114 | * => xAxisData = [1, 3, 4, 5, 6, 7, 9, 11 ] |
|
116 | * => xAxisData = [1, 3, 4, 5, 6, 7, 9, 11 ] | |
115 | * => valuesData = [NaN, NaN, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, NaN, NaN, NaN, NaN] |
|
117 | * => valuesData = [NaN, NaN, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, NaN, NaN, NaN, NaN] | |
116 | * |
|
118 | * | |
117 | * @param xAxisData the x-axis data of the data series |
|
119 | * @param xAxisData the x-axis data of the data series | |
118 | * @param valuesData the values data of the data series |
|
120 | * @param valuesData the values data of the data series | |
119 | * @param resolution the resoultion (on x-axis) used to determinate data holes |
|
121 | * @param resolution the resoultion (on x-axis) used to determinate data holes | |
120 | * @param fillValue the fill value used for data holes in the values data |
|
122 | * @param fillValue the fill value used for data holes in the values data | |
121 | * @param minBound the limit at which to start filling data holes for the series. If set to NaN, |
|
123 | * @param minBound the limit at which to start filling data holes for the series. If set to NaN, | |
122 | * the limit is not used |
|
124 | * the limit is not used | |
123 | * @param maxBound the limit at which to end filling data holes for the series. If set to NaN, |
|
125 | * @param maxBound the limit at which to end filling data holes for the series. If set to NaN, | |
124 | * the limit is not used |
|
126 | * the limit is not used | |
125 | * |
|
127 | * | |
126 | * @remarks There is no control over the consistency between x-axis data and values data. The |
|
128 | * @remarks There is no control over the consistency between x-axis data and values data. The | |
127 | * method considers that the data is well formed (the total number of values data is a multiple |
|
129 | * method considers that the data is well formed (the total number of values data is a multiple | |
128 | * of the number of x-axis data) |
|
130 | * of the number of x-axis data) | |
129 | */ |
|
131 | */ | |
130 | static void fillDataHoles(std::vector<double> &xAxisData, std::vector<double> &valuesData, |
|
132 | static void fillDataHoles(std::vector<double> &xAxisData, std::vector<double> &valuesData, | |
131 | double resolution, |
|
133 | double resolution, | |
132 | double fillValue = std::numeric_limits<double>::quiet_NaN(), |
|
134 | double fillValue = std::numeric_limits<double>::quiet_NaN(), | |
133 | double minBound = std::numeric_limits<double>::quiet_NaN(), |
|
135 | double minBound = std::numeric_limits<double>::quiet_NaN(), | |
134 | double maxBound = std::numeric_limits<double>::quiet_NaN()); |
|
136 | double maxBound = std::numeric_limits<double>::quiet_NaN()); | |
135 | /** |
|
137 | /** | |
136 | * Computes the resolution of a dataset passed as a parameter. |
|
138 | * Computes the resolution of a dataset passed as a parameter. | |
137 | * |
|
139 | * | |
138 | * The resolution of a dataset is the minimum difference between two values that follow in the |
|
140 | * The resolution of a dataset is the minimum difference between two values that follow in the | |
139 | * set. |
|
141 | * set. | |
140 | * For example: |
|
142 | * For example: | |
141 | * - for the set [0, 2, 4, 8, 10, 11, 13] => the resolution is 1 (difference between 10 and 11). |
|
143 | * - for the set [0, 2, 4, 8, 10, 11, 13] => the resolution is 1 (difference between 10 and 11). | |
142 | * |
|
144 | * | |
143 | * A resolution can be calculated on the logarithmic scale (base of 10). In this case, the |
|
145 | * A resolution can be calculated on the logarithmic scale (base of 10). In this case, the | |
144 | * dataset is first converted to logarithmic values. |
|
146 | * dataset is first converted to logarithmic values. | |
145 | * For example: |
|
147 | * For example: | |
146 | * - for the set [10, 100, 10000, 1000000], the values are converted to [1, 2, 4, 6] => the |
|
148 | * - for the set [10, 100, 10000, 1000000], the values are converted to [1, 2, 4, 6] => the | |
147 | * logarithmic resolution is 1 (difference between 1 and 2). |
|
149 | * logarithmic resolution is 1 (difference between 1 and 2). | |
148 | * |
|
150 | * | |
149 | * @param begin the iterator pointing to the beginning of the dataset |
|
151 | * @param begin the iterator pointing to the beginning of the dataset | |
150 | * @param end the iterator pointing to the end of the dataset |
|
152 | * @param end the iterator pointing to the end of the dataset | |
151 | * @param logarithmic computes a logarithmic resolution or not |
|
153 | * @param logarithmic computes a logarithmic resolution or not | |
152 | * @return the resolution computed |
|
154 | * @return the resolution computed | |
153 | * @warning the method considers the dataset as sorted and doesn't control it. |
|
155 | * @warning the method considers the dataset as sorted and doesn't control it. | |
154 | */ |
|
156 | */ | |
155 | template <typename Iterator> |
|
157 | template <typename Iterator> | |
156 | static Resolution resolution(Iterator begin, Iterator end, bool logarithmic = false); |
|
158 | static Resolution resolution(Iterator begin, Iterator end, bool logarithmic = false); | |
|
159 | ||||
|
160 | /** | |||
|
161 | * Computes a regular mesh for a data series, according to resolutions for x-axis and y-axis | |||
|
162 | * passed as parameters. | |||
|
163 | * | |||
|
164 | * The mesh is created from the resolutions in x and y and the boundaries delimiting the data | |||
|
165 | * series. If the resolutions do not allow to obtain a regular mesh, they are recalculated. | |||
|
166 | * | |||
|
167 | * For example : | |||
|
168 | * Let x-axis data = [0, 1, 3, 5, 9], its associated values ββ= [0, 10, 30, 50, 90] and | |||
|
169 | * xResolution = 2. | |||
|
170 | * Based on the resolution, the mesh would be [0, 2, 4, 6, 8, 10] and would be invalid because | |||
|
171 | * it exceeds the maximum bound of the data. The resolution is thus recalculated so that the | |||
|
172 | * mesh holds between the data terminals. | |||
|
173 | * So => resolution is 1.8 and the mesh is [0, 1.8, 3.6, 5.4, 7.2, 9]. | |||
|
174 | * | |||
|
175 | * Once the mesh is generated in x and y, the values ββare associated with each mesh point, | |||
|
176 | * based on the data in the series, finding the existing data at which the mesh point would be | |||
|
177 | * or would be closest to, without exceeding it. | |||
|
178 | * | |||
|
179 | * In the example, we determine the value of each mesh point: | |||
|
180 | * - x = 0 => value = 0 (existing x in the data series) | |||
|
181 | * - x = 1.8 => value = 10 (the closest existing x: 1) | |||
|
182 | * - x = 3.6 => value = 30 (the closest existing x: 3) | |||
|
183 | * - x = 5.4 => value = 50 (the closest existing x: 5) | |||
|
184 | * - x = 7.2 => value = 50 (the closest existing x: 5) | |||
|
185 | * - x = 9 => value = 90 (existing x in the data series) | |||
|
186 | * | |||
|
187 | * Same algorithm is applied for y-axis. | |||
|
188 | * | |||
|
189 | * @param begin the iterator pointing to the beginning of the data series | |||
|
190 | * @param end the iterator pointing to the end of the data series | |||
|
191 | * @param xResolution the resolution expected for the mesh's x-axis | |||
|
192 | * @param yResolution the resolution expected for the mesh's y-axis | |||
|
193 | * @return the mesh created, an empty mesh if the input data do not allow to generate a regular | |||
|
194 | * mesh (empty data, null resolutions, logarithmic x-axis) | |||
|
195 | * @warning the method considers the dataset as sorted and doesn't control it. | |||
|
196 | */ | |||
|
197 | static Mesh regularMesh(DataSeriesIterator begin, DataSeriesIterator end, | |||
|
198 | Resolution xResolution, Resolution yResolution); | |||
157 | }; |
|
199 | }; | |
158 |
|
200 | |||
159 | template <typename Iterator> |
|
201 | template <typename Iterator> | |
160 | DataSeriesUtils::Resolution DataSeriesUtils::resolution(Iterator begin, Iterator end, |
|
202 | DataSeriesUtils::Resolution DataSeriesUtils::resolution(Iterator begin, Iterator end, | |
161 | bool logarithmic) |
|
203 | bool logarithmic) | |
162 | { |
|
204 | { | |
163 | // Retrieves data into a work dataset |
|
205 | // Retrieves data into a work dataset | |
164 | using ValueType = typename Iterator::value_type; |
|
206 | using ValueType = typename Iterator::value_type; | |
165 | std::vector<ValueType> values{}; |
|
207 | std::vector<ValueType> values{}; | |
166 | std::copy(begin, end, std::back_inserter(values)); |
|
208 | std::copy(begin, end, std::back_inserter(values)); | |
167 |
|
209 | |||
168 | // Converts data if logarithmic flag is activated |
|
210 | // Converts data if logarithmic flag is activated | |
169 | if (logarithmic) { |
|
211 | if (logarithmic) { | |
170 | std::for_each(values.begin(), values.end(), |
|
212 | std::for_each(values.begin(), values.end(), | |
171 | [logarithmic](auto &val) { val = std::log10(val); }); |
|
213 | [logarithmic](auto &val) { val = std::log10(val); }); | |
172 | } |
|
214 | } | |
173 |
|
215 | |||
174 | // Computes the differences between the values in the dataset |
|
216 | // Computes the differences between the values in the dataset | |
175 | std::adjacent_difference(values.begin(), values.end(), values.begin()); |
|
217 | std::adjacent_difference(values.begin(), values.end(), values.begin()); | |
176 |
|
218 | |||
177 | // Retrieves the smallest difference |
|
219 | // Retrieves the smallest difference | |
178 | auto resolutionIt = std::min_element(values.begin(), values.end()); |
|
220 | auto resolutionIt = std::min_element(values.begin(), values.end()); | |
179 | auto resolution |
|
221 | auto resolution | |
180 | = resolutionIt != values.end() ? *resolutionIt : std::numeric_limits<double>::quiet_NaN(); |
|
222 | = resolutionIt != values.end() ? *resolutionIt : std::numeric_limits<double>::quiet_NaN(); | |
181 |
|
223 | |||
182 | return Resolution{resolution, logarithmic}; |
|
224 | return Resolution{resolution, logarithmic}; | |
183 | } |
|
225 | } | |
184 |
|
226 | |||
185 | #endif // SCIQLOP_DATASERIESUTILS_H |
|
227 | #endif // SCIQLOP_DATASERIESUTILS_H |
@@ -1,81 +1,116 | |||||
1 | #include "Data/DataSeriesUtils.h" |
|
1 | #include "Data/DataSeriesUtils.h" | |
2 |
|
2 | |||
|
3 | #include <cmath> | |||
|
4 | ||||
3 | Q_LOGGING_CATEGORY(LOG_DataSeriesUtils, "DataSeriesUtils") |
|
5 | Q_LOGGING_CATEGORY(LOG_DataSeriesUtils, "DataSeriesUtils") | |
4 |
|
6 | |||
5 | void DataSeriesUtils::fillDataHoles(std::vector<double> &xAxisData, std::vector<double> &valuesData, |
|
7 | void DataSeriesUtils::fillDataHoles(std::vector<double> &xAxisData, std::vector<double> &valuesData, | |
6 | double resolution, double fillValue, double minBound, |
|
8 | double resolution, double fillValue, double minBound, | |
7 | double maxBound) |
|
9 | double maxBound) | |
8 | { |
|
10 | { | |
9 | if (resolution == 0. || std::isnan(resolution)) { |
|
11 | if (resolution == 0. || std::isnan(resolution)) { | |
10 | qCWarning(LOG_DataSeriesUtils()) |
|
12 | qCWarning(LOG_DataSeriesUtils()) | |
11 | << "Can't fill data holes with a null resolution, no changes will be made"; |
|
13 | << "Can't fill data holes with a null resolution, no changes will be made"; | |
12 | return; |
|
14 | return; | |
13 | } |
|
15 | } | |
14 |
|
16 | |||
15 | if (xAxisData.empty()) { |
|
17 | if (xAxisData.empty()) { | |
16 | qCWarning(LOG_DataSeriesUtils()) |
|
18 | qCWarning(LOG_DataSeriesUtils()) | |
17 | << "Can't fill data holes for empty data, no changes will be made"; |
|
19 | << "Can't fill data holes for empty data, no changes will be made"; | |
18 | return; |
|
20 | return; | |
19 | } |
|
21 | } | |
20 |
|
22 | |||
21 | // Gets the number of values per x-axis data |
|
23 | // Gets the number of values per x-axis data | |
22 | auto nbComponents = valuesData.size() / xAxisData.size(); |
|
24 | auto nbComponents = valuesData.size() / xAxisData.size(); | |
23 |
|
25 | |||
24 | // Generates fill values that will be used to complete values data |
|
26 | // Generates fill values that will be used to complete values data | |
25 | std::vector<double> fillValues(nbComponents, fillValue); |
|
27 | std::vector<double> fillValues(nbComponents, fillValue); | |
26 |
|
28 | |||
27 | // Checks if there are data holes on the beginning of the data and generates the hole at the |
|
29 | // Checks if there are data holes on the beginning of the data and generates the hole at the | |
28 | // extremity if it's the case |
|
30 | // extremity if it's the case | |
29 | auto minXAxisData = xAxisData.front(); |
|
31 | auto minXAxisData = xAxisData.front(); | |
30 | if (!std::isnan(minBound) && minBound < minXAxisData) { |
|
32 | if (!std::isnan(minBound) && minBound < minXAxisData) { | |
31 | auto holeSize = static_cast<int>((minXAxisData - minBound) / resolution); |
|
33 | auto holeSize = static_cast<int>((minXAxisData - minBound) / resolution); | |
32 | if (holeSize > 0) { |
|
34 | if (holeSize > 0) { | |
33 | xAxisData.insert(xAxisData.begin(), minXAxisData - holeSize * resolution); |
|
35 | xAxisData.insert(xAxisData.begin(), minXAxisData - holeSize * resolution); | |
34 | valuesData.insert(valuesData.begin(), fillValues.begin(), fillValues.end()); |
|
36 | valuesData.insert(valuesData.begin(), fillValues.begin(), fillValues.end()); | |
35 | } |
|
37 | } | |
36 | } |
|
38 | } | |
37 |
|
39 | |||
38 | // Same for the end of the data |
|
40 | // Same for the end of the data | |
39 | auto maxXAxisData = xAxisData.back(); |
|
41 | auto maxXAxisData = xAxisData.back(); | |
40 | if (!std::isnan(maxBound) && maxBound > maxXAxisData) { |
|
42 | if (!std::isnan(maxBound) && maxBound > maxXAxisData) { | |
41 | auto holeSize = static_cast<int>((maxBound - maxXAxisData) / resolution); |
|
43 | auto holeSize = static_cast<int>((maxBound - maxXAxisData) / resolution); | |
42 | if (holeSize > 0) { |
|
44 | if (holeSize > 0) { | |
43 | xAxisData.insert(xAxisData.end(), maxXAxisData + holeSize * resolution); |
|
45 | xAxisData.insert(xAxisData.end(), maxXAxisData + holeSize * resolution); | |
44 | valuesData.insert(valuesData.end(), fillValues.begin(), fillValues.end()); |
|
46 | valuesData.insert(valuesData.end(), fillValues.begin(), fillValues.end()); | |
45 | } |
|
47 | } | |
46 | } |
|
48 | } | |
47 |
|
49 | |||
48 | // Generates other data holes |
|
50 | // Generates other data holes | |
49 | auto xAxisIt = xAxisData.begin(); |
|
51 | auto xAxisIt = xAxisData.begin(); | |
50 | while (xAxisIt != xAxisData.end()) { |
|
52 | while (xAxisIt != xAxisData.end()) { | |
51 | // Stops at first value which has a gap greater than resolution with the value next to it |
|
53 | // Stops at first value which has a gap greater than resolution with the value next to it | |
52 | xAxisIt = std::adjacent_find( |
|
54 | xAxisIt = std::adjacent_find( | |
53 | xAxisIt, xAxisData.end(), |
|
55 | xAxisIt, xAxisData.end(), | |
54 | [resolution](const auto &a, const auto &b) { return (b - a) > resolution; }); |
|
56 | [resolution](const auto &a, const auto &b) { return (b - a) > resolution; }); | |
55 |
|
57 | |||
56 | if (xAxisIt != xAxisData.end()) { |
|
58 | if (xAxisIt != xAxisData.end()) { | |
57 | auto nextXAxisIt = xAxisIt + 1; |
|
59 | auto nextXAxisIt = xAxisIt + 1; | |
58 |
|
60 | |||
59 | // Gets the values that has a gap greater than resolution between them |
|
61 | // Gets the values that has a gap greater than resolution between them | |
60 | auto lowValue = *xAxisIt; |
|
62 | auto lowValue = *xAxisIt; | |
61 | auto highValue = *nextXAxisIt; |
|
63 | auto highValue = *nextXAxisIt; | |
62 |
|
64 | |||
63 | // Completes holes between the two values by creating new values (according to the |
|
65 | // Completes holes between the two values by creating new values (according to the | |
64 | // resolution) |
|
66 | // resolution) | |
65 | for (auto i = lowValue + resolution; i < highValue; i += resolution) { |
|
67 | for (auto i = lowValue + resolution; i < highValue; i += resolution) { | |
66 | // Gets the iterator of values data from which to insert fill values |
|
68 | // Gets the iterator of values data from which to insert fill values | |
67 | auto nextValuesIt = valuesData.begin() |
|
69 | auto nextValuesIt = valuesData.begin() | |
68 | + std::distance(xAxisData.begin(), nextXAxisIt) * nbComponents; |
|
70 | + std::distance(xAxisData.begin(), nextXAxisIt) * nbComponents; | |
69 |
|
71 | |||
70 | // New value is inserted before nextXAxisIt |
|
72 | // New value is inserted before nextXAxisIt | |
71 | nextXAxisIt = xAxisData.insert(nextXAxisIt, i) + 1; |
|
73 | nextXAxisIt = xAxisData.insert(nextXAxisIt, i) + 1; | |
72 |
|
74 | |||
73 | // New values are inserted before nextValuesIt |
|
75 | // New values are inserted before nextValuesIt | |
74 | valuesData.insert(nextValuesIt, fillValues.begin(), fillValues.end()); |
|
76 | valuesData.insert(nextValuesIt, fillValues.begin(), fillValues.end()); | |
75 | } |
|
77 | } | |
76 |
|
78 | |||
77 | // Moves to the next value to continue loop on the x-axis data |
|
79 | // Moves to the next value to continue loop on the x-axis data | |
78 | xAxisIt = nextXAxisIt; |
|
80 | xAxisIt = nextXAxisIt; | |
79 | } |
|
81 | } | |
80 | } |
|
82 | } | |
81 | } |
|
83 | } | |
|
84 | DataSeriesUtils::Mesh DataSeriesUtils::regularMesh(DataSeriesIterator begin, DataSeriesIterator end, | |||
|
85 | Resolution xResolution, Resolution yResolution) | |||
|
86 | { | |||
|
87 | // Checks preconditions | |||
|
88 | if (xResolution.m_Val == 0. || std::isnan(xResolution.m_Val) || yResolution.m_Val == 0. | |||
|
89 | || std::isnan(yResolution.m_Val)) { | |||
|
90 | qCWarning(LOG_DataSeriesUtils()) << "Can't generate mesh with a null resolution"; | |||
|
91 | return Mesh{}; | |||
|
92 | } | |||
|
93 | ||||
|
94 | if (xResolution.m_Logarithmic) { | |||
|
95 | qCWarning(LOG_DataSeriesUtils()) | |||
|
96 | << "Can't generate mesh with a logarithmic x-axis resolution"; | |||
|
97 | return Mesh{}; | |||
|
98 | } | |||
|
99 | ||||
|
100 | if (std::distance(begin, end) == 0) { | |||
|
101 | qCWarning(LOG_DataSeriesUtils()) << "Can't generate mesh for empty data"; | |||
|
102 | return Mesh{}; | |||
|
103 | } | |||
|
104 | ||||
|
105 | auto yData = begin->y(); | |||
|
106 | if (yData.empty()) { | |||
|
107 | qCWarning(LOG_DataSeriesUtils()) << "Can't generate mesh for data with no y-axis"; | |||
|
108 | return Mesh{}; | |||
|
109 | } | |||
|
110 | ||||
|
111 | // Converts y-axis and its resolution to logarithmic values | |||
|
112 | if (yResolution.m_Logarithmic) { | |||
|
113 | std::for_each(yData.begin(), yData.end(), [](auto &val) { val = std::log10(val); }); | |||
|
114 | } | |||
|
115 | ||||
|
116 | } |
General Comments 0
You need to be logged in to leave comments.
Login now