##// END OF EJS Templates
Adapts SqpIterator to make non-const iterators
Alexandre Leroux -
r673:09db2d1144f0
parent child
Show More
@@ -1,282 +1,328
1 1 #ifndef SCIQLOP_ARRAYDATA_H
2 2 #define SCIQLOP_ARRAYDATA_H
3 3
4 4 #include "Data/ArrayDataIterator.h"
5 5 #include <Common/SortUtils.h>
6 6
7 7 #include <QReadLocker>
8 8 #include <QReadWriteLock>
9 9 #include <QVector>
10 10
11 11 #include <memory>
12 12
13 13 template <int Dim>
14 14 class ArrayData;
15 15
16 16 using DataContainer = QVector<double>;
17 17
18 18 namespace arraydata_detail {
19 19
20 20 /// Struct used to sort ArrayData
21 21 template <int Dim>
22 22 struct Sort {
23 23 static std::shared_ptr<ArrayData<Dim> > sort(const DataContainer &data, int nbComponents,
24 24 const std::vector<int> &sortPermutation)
25 25 {
26 26 return std::make_shared<ArrayData<Dim> >(
27 27 SortUtils::sort(data, nbComponents, sortPermutation), nbComponents);
28 28 }
29 29 };
30 30
31 31 /// Specialization for uni-dimensional ArrayData
32 32 template <>
33 33 struct Sort<1> {
34 34 static std::shared_ptr<ArrayData<1> > sort(const DataContainer &data, int nbComponents,
35 35 const std::vector<int> &sortPermutation)
36 36 {
37 37 Q_UNUSED(nbComponents)
38 38 return std::make_shared<ArrayData<1> >(SortUtils::sort(data, 1, sortPermutation));
39 39 }
40 40 };
41 41
42 template <int Dim, bool IsConst>
43 class IteratorValue;
44
45 template <int Dim, bool IsConst>
46 struct IteratorValueBuilder {
47 };
48
49 template <int Dim>
50 struct IteratorValueBuilder<Dim, true> {
51 using DataContainerIterator = DataContainer::const_iterator;
52 };
53
42 54 template <int Dim>
55 struct IteratorValueBuilder<Dim, false> {
56 using DataContainerIterator = DataContainer::iterator;
57 };
58
59 template <int Dim, bool IsConst>
43 60 class IteratorValue : public ArrayDataIteratorValue::Impl {
44 61 public:
62 friend class ArrayData<Dim>;
63 friend class IteratorValueBuilder<Dim, IsConst>;
64
65 using DataContainerIterator =
66 typename IteratorValueBuilder<Dim, IsConst>::DataContainerIterator;
67
68 template <bool IC = IsConst, typename = std::enable_if_t<IC == true> >
45 69 explicit IteratorValue(const DataContainer &container, int nbComponents, bool begin)
46 70 : m_It{begin ? container.cbegin() : container.cend()}, m_NbComponents{nbComponents}
47 71 {
48 72 }
49 73
74 template <bool IC = IsConst, typename = std::enable_if_t<IC == false> >
75 explicit IteratorValue(DataContainer &container, int nbComponents, bool begin)
76 : m_It{begin ? container.begin() : container.end()}, m_NbComponents{nbComponents}
77 {
78 }
79
50 80 IteratorValue(const IteratorValue &other) = default;
51 81
52 82 std::unique_ptr<ArrayDataIteratorValue::Impl> clone() const override
53 83 {
54 return std::make_unique<IteratorValue<Dim> >(*this);
84 return std::make_unique<IteratorValue<Dim, IsConst> >(*this);
55 85 }
56 86
57 87 bool equals(const ArrayDataIteratorValue::Impl &other) const override try {
58 88 const auto &otherImpl = dynamic_cast<const IteratorValue &>(other);
59 89 return std::tie(m_It, m_NbComponents) == std::tie(otherImpl.m_It, otherImpl.m_NbComponents);
60 90 }
61 91 catch (const std::bad_cast &) {
62 92 return false;
63 93 }
64 94
65 95 void next() override { std::advance(m_It, m_NbComponents); }
66 96 void prev() override { std::advance(m_It, -m_NbComponents); }
67 97
68 98 double at(int componentIndex) const override { return *(m_It + componentIndex); }
69 99 double first() const override { return *m_It; }
70 100 double min() const override
71 101 {
72 102 auto values = this->values();
73 103 auto end = values.cend();
74 104 auto it = std::min_element(values.cbegin(), end, [](const auto &v1, const auto &v2) {
75 105 return SortUtils::minCompareWithNaN(v1, v2);
76 106 });
77 107
78 108 return it != end ? *it : std::numeric_limits<double>::quiet_NaN();
79 109 }
80 110 double max() const override
81 111 {
82 112 auto values = this->values();
83 113 auto end = values.cend();
84 114 auto it = std::max_element(values.cbegin(), end, [](const auto &v1, const auto &v2) {
85 115 return SortUtils::maxCompareWithNaN(v1, v2);
86 116 });
87 117 return it != end ? *it : std::numeric_limits<double>::quiet_NaN();
88 118 }
89 119
90 120 QVector<double> values() const override
91 121 {
92 122 auto result = QVector<double>{};
93 123 for (auto i = 0; i < m_NbComponents; ++i) {
94 124 result.push_back(*(m_It + i));
95 125 }
96 126
97 127 return result;
98 128 }
99 129
100 130 private:
101 DataContainer::const_iterator m_It;
131 DataContainerIterator m_It;
102 132 int m_NbComponents;
103 133 };
104 134
105 135 } // namespace arraydata_detail
106 136
107 137 /**
108 138 * @brief The ArrayData class represents a dataset for a data series.
109 139 *
110 140 * A dataset can be unidimensional or two-dimensional. This property is determined by the Dim
111 141 * template-parameter. In a case of a two-dimensional dataset, each dataset component has the same
112 142 * number of values
113 143 *
114 144 * @tparam Dim the dimension of the ArrayData (one or two)
115 145 * @sa IDataSeries
116 146 */
117 147 template <int Dim>
118 148 class ArrayData {
119 149 public:
120 150 // ///// //
121 151 // Ctors //
122 152 // ///// //
123 153
124 154 /**
125 155 * Ctor for a unidimensional ArrayData
126 156 * @param data the data the ArrayData will hold
127 157 */
128 158 template <int D = Dim, typename = std::enable_if_t<D == 1> >
129 159 explicit ArrayData(DataContainer data) : m_Data{std::move(data)}, m_NbComponents{1}
130 160 {
131 161 }
132 162
133 163 /**
134 164 * Ctor for a two-dimensional ArrayData. The number of components (number of lines) must be
135 165 * greater than 2 and must be a divisor of the total number of data in the vector
136 166 * @param data the data the ArrayData will hold
137 167 * @param nbComponents the number of components
138 168 * @throws std::invalid_argument if the number of components is less than 2 or is not a divisor
139 169 * of the size of the data
140 170 */
141 171 template <int D = Dim, typename = std::enable_if_t<D == 2> >
142 172 explicit ArrayData(DataContainer data, int nbComponents)
143 173 : m_Data{std::move(data)}, m_NbComponents{nbComponents}
144 174 {
145 175 if (nbComponents < 2) {
146 176 throw std::invalid_argument{
147 177 QString{"A multidimensional ArrayData must have at least 2 components (found: %1)"}
148 178 .arg(nbComponents)
149 179 .toStdString()};
150 180 }
151 181
152 182 if (m_Data.size() % m_NbComponents != 0) {
153 183 throw std::invalid_argument{QString{
154 184 "The number of components (%1) is inconsistent with the total number of data (%2)"}
155 185 .arg(m_Data.size(), nbComponents)
156 186 .toStdString()};
157 187 }
158 188 }
159 189
160 190 /// Copy ctor
161 191 explicit ArrayData(const ArrayData &other)
162 192 {
163 193 QReadLocker otherLocker{&other.m_Lock};
164 194 m_Data = other.m_Data;
165 195 m_NbComponents = other.m_NbComponents;
166 196 }
167 197
168 198 // /////////////// //
169 199 // General methods //
170 200 // /////////////// //
171 201
172 202 /**
173 203 * Merges into the array data an other array data. The two array datas must have the same number
174 204 * of components so the merge can be done
175 205 * @param other the array data to merge with
176 206 * @param prepend if true, the other array data is inserted at the beginning, otherwise it is
177 207 * inserted at the end
178 208 */
179 209 void add(const ArrayData<Dim> &other, bool prepend = false)
180 210 {
181 211 QWriteLocker locker{&m_Lock};
182 212 QReadLocker otherLocker{&other.m_Lock};
183 213
184 214 if (m_NbComponents != other.componentCount()) {
185 215 return;
186 216 }
187 217
188 218 if (prepend) {
189 219 auto otherDataSize = other.m_Data.size();
190 220 m_Data.insert(m_Data.begin(), otherDataSize, 0.);
191 221 for (auto i = 0; i < otherDataSize; ++i) {
192 222 m_Data.replace(i, other.m_Data.at(i));
193 223 }
194 224 }
195 225 else {
196 226 m_Data.append(other.m_Data);
197 227 }
198 228 }
199 229
200 230 void clear()
201 231 {
202 232 QWriteLocker locker{&m_Lock};
203 233 m_Data.clear();
204 234 }
205 235
206 236 int componentCount() const noexcept { return m_NbComponents; }
207 237
208 238 /// @return the size (i.e. number of values) of a single component
209 239 /// @remarks in a case of a two-dimensional ArrayData, each component has the same size
210 240 int size() const
211 241 {
212 242 QReadLocker locker{&m_Lock};
213 243 return m_Data.size() / m_NbComponents;
214 244 }
215 245
216 246 std::shared_ptr<ArrayData<Dim> > sort(const std::vector<int> &sortPermutation)
217 247 {
218 248 QReadLocker locker{&m_Lock};
219 249 return arraydata_detail::Sort<Dim>::sort(m_Data, m_NbComponents, sortPermutation);
220 250 }
221 251
222 252 // ///////// //
223 253 // Iterators //
224 254 // ///////// //
225 255
256 ArrayDataIterator begin()
257 {
258 return ArrayDataIterator{
259 ArrayDataIteratorValue{std::make_unique<arraydata_detail::IteratorValue<Dim, false> >(
260 m_Data, m_NbComponents, true)}};
261 }
262
263 ArrayDataIterator end()
264 {
265 return ArrayDataIterator{
266 ArrayDataIteratorValue{std::make_unique<arraydata_detail::IteratorValue<Dim, false> >(
267 m_Data, m_NbComponents, false)}};
268 }
269
226 270 ArrayDataIterator cbegin() const
227 271 {
228 return ArrayDataIterator{ArrayDataIteratorValue{
229 std::make_unique<arraydata_detail::IteratorValue<Dim> >(m_Data, m_NbComponents, true)}};
272 return ArrayDataIterator{
273 ArrayDataIteratorValue{std::make_unique<arraydata_detail::IteratorValue<Dim, true> >(
274 m_Data, m_NbComponents, true)}};
230 275 }
276
231 277 ArrayDataIterator cend() const
232 278 {
233 279 return ArrayDataIterator{
234 ArrayDataIteratorValue{std::make_unique<arraydata_detail::IteratorValue<Dim> >(
280 ArrayDataIteratorValue{std::make_unique<arraydata_detail::IteratorValue<Dim, true> >(
235 281 m_Data, m_NbComponents, false)}};
236 282 }
237 283
238 284 /// Inserts at the end of the array data the values passed as a parameter. This
239 285 /// method is intended to be used in the context of generating a back insert iterator, or only
240 286 /// if it's ensured that the total size of the vector is consistent with the number of
241 287 /// components of the array data
242 288 /// @param values the values to insert
243 289 /// @sa http://en.cppreference.com/w/cpp/iterator/back_inserter
244 290 void push_back(const QVector<double> &values)
245 291 {
246 292 Q_ASSERT(values.size() % m_NbComponents == 0);
247 293 m_Data.append(values);
248 294 }
249 295
250 296 /**
251 297 * @return the data at a specified index
252 298 * @remarks index must be a valid position
253 299 */
254 300 double at(int index) const noexcept
255 301 {
256 302 QReadLocker locker{&m_Lock};
257 303 return m_Data.at(index);
258 304 }
259 305
260 306 // ///////////// //
261 307 // 1-dim methods //
262 308 // ///////////// //
263 309
264 310 /**
265 311 * @return the data as a vector, as a const reference
266 312 * @remarks this method is only available for a unidimensional ArrayData
267 313 */
268 314 template <int D = Dim, typename = std::enable_if_t<D == 1> >
269 315 const QVector<double> &cdata() const noexcept
270 316 {
271 317 QReadLocker locker{&m_Lock};
272 318 return m_Data;
273 319 }
274 320
275 321 private:
276 322 DataContainer m_Data;
277 323 /// Number of components (lines). Is always 1 in a 1-dim ArrayData
278 324 int m_NbComponents;
279 325 mutable QReadWriteLock m_Lock;
280 326 };
281 327
282 328 #endif // SCIQLOP_ARRAYDATA_H
@@ -1,317 +1,340
1 1 #ifndef SCIQLOP_DATASERIES_H
2 2 #define SCIQLOP_DATASERIES_H
3 3
4 4 #include "CoreGlobal.h"
5 5
6 6 #include <Common/SortUtils.h>
7 7
8 8 #include <Data/ArrayData.h>
9 9 #include <Data/DataSeriesMergeHelper.h>
10 10 #include <Data/IDataSeries.h>
11 11
12 12 #include <QLoggingCategory>
13 13 #include <QReadLocker>
14 14 #include <QReadWriteLock>
15 15 #include <memory>
16 16
17 17 // We don't use the Qt macro since the log is used in the header file, which causes multiple log
18 18 // definitions with inheritance. Inline method is used instead
19 19 inline const QLoggingCategory &LOG_DataSeries()
20 20 {
21 21 static const QLoggingCategory category{"DataSeries"};
22 22 return category;
23 23 }
24 24
25 25 template <int Dim>
26 26 class DataSeries;
27 27
28 28 namespace dataseries_detail {
29 29
30 template <int Dim>
30 template <int Dim, bool IsConst>
31 31 class IteratorValue : public DataSeriesIteratorValue::Impl {
32 32 public:
33 friend class DataSeries<Dim>;
34
35 template <bool IC = IsConst, typename = std::enable_if_t<IC == false> >
36 explicit IteratorValue(DataSeries<Dim> &dataSeries, bool begin)
37 : m_XIt(begin ? dataSeries.xAxisData()->begin() : dataSeries.xAxisData()->end()),
38 m_ValuesIt(begin ? dataSeries.valuesData()->begin() : dataSeries.valuesData()->end())
39 {
40 }
41
42 template <bool IC = IsConst, typename = std::enable_if_t<IC == true> >
33 43 explicit IteratorValue(const DataSeries<Dim> &dataSeries, bool begin)
34 44 : m_XIt(begin ? dataSeries.xAxisData()->cbegin() : dataSeries.xAxisData()->cend()),
35 45 m_ValuesIt(begin ? dataSeries.valuesData()->cbegin()
36 46 : dataSeries.valuesData()->cend())
37 47 {
38 48 }
49
39 50 IteratorValue(const IteratorValue &other) = default;
40 51
41 52 std::unique_ptr<DataSeriesIteratorValue::Impl> clone() const override
42 53 {
43 return std::make_unique<IteratorValue<Dim> >(*this);
54 return std::make_unique<IteratorValue<Dim, IsConst> >(*this);
44 55 }
45 56
46 57 bool equals(const DataSeriesIteratorValue::Impl &other) const override try {
47 58 const auto &otherImpl = dynamic_cast<const IteratorValue &>(other);
48 59 return std::tie(m_XIt, m_ValuesIt) == std::tie(otherImpl.m_XIt, otherImpl.m_ValuesIt);
49 60 }
50 61 catch (const std::bad_cast &) {
51 62 return false;
52 63 }
53 64
54 65 void next() override
55 66 {
56 67 ++m_XIt;
57 68 ++m_ValuesIt;
58 69 }
59 70
60 71 void prev() override
61 72 {
62 73 --m_XIt;
63 74 --m_ValuesIt;
64 75 }
65 76
66 77 double x() const override { return m_XIt->at(0); }
67 78 double value() const override { return m_ValuesIt->at(0); }
68 79 double value(int componentIndex) const override { return m_ValuesIt->at(componentIndex); }
69 80 double minValue() const override { return m_ValuesIt->min(); }
70 81 double maxValue() const override { return m_ValuesIt->max(); }
71 82 QVector<double> values() const override { return m_ValuesIt->values(); }
72 83
73 84 private:
74 85 ArrayDataIterator m_XIt;
75 86 ArrayDataIterator m_ValuesIt;
76 87 };
77 88 } // namespace dataseries_detail
78 89
79 90 /**
80 91 * @brief The DataSeries class is the base (abstract) implementation of IDataSeries.
81 92 *
82 93 * It proposes to set a dimension for the values ​​data.
83 94 *
84 95 * A DataSeries is always sorted on its x-axis data.
85 96 *
86 97 * @tparam Dim The dimension of the values data
87 98 *
88 99 */
89 100 template <int Dim>
90 101 class SCIQLOP_CORE_EXPORT DataSeries : public IDataSeries {
91 102 friend class DataSeriesMergeHelper;
92 103
93 104 public:
94 105 /// Tag needed to define the push_back() method
95 106 /// @sa push_back()
96 107 using value_type = DataSeriesIteratorValue;
97 108
98 109 /// @sa IDataSeries::xAxisData()
99 110 std::shared_ptr<ArrayData<1> > xAxisData() override { return m_XAxisData; }
100 111 const std::shared_ptr<ArrayData<1> > xAxisData() const { return m_XAxisData; }
101 112
102 113 /// @sa IDataSeries::xAxisUnit()
103 114 Unit xAxisUnit() const override { return m_XAxisUnit; }
104 115
105 116 /// @return the values dataset
106 117 std::shared_ptr<ArrayData<Dim> > valuesData() { return m_ValuesData; }
107 118 const std::shared_ptr<ArrayData<Dim> > valuesData() const { return m_ValuesData; }
108 119
109 120 /// @sa IDataSeries::valuesUnit()
110 121 Unit valuesUnit() const override { return m_ValuesUnit; }
111 122
112 123
113 124 SqpRange range() const override
114 125 {
115 126 if (!m_XAxisData->cdata().isEmpty()) {
116 127 return SqpRange{m_XAxisData->cdata().first(), m_XAxisData->cdata().last()};
117 128 }
118 129
119 130 return SqpRange{};
120 131 }
121 132
122 133 void clear()
123 134 {
124 135 m_XAxisData->clear();
125 136 m_ValuesData->clear();
126 137 }
127 138
128 139 bool isEmpty() const noexcept { return m_XAxisData->size() == 0; }
129 140
130 141 /// Merges into the data series an other data series
131 142 /// @remarks the data series to merge with is cleared after the operation
132 143 void merge(IDataSeries *dataSeries) override
133 144 {
134 145 dataSeries->lockWrite();
135 146 lockWrite();
136 147
137 148 if (auto other = dynamic_cast<DataSeries<Dim> *>(dataSeries)) {
138 149 DataSeriesMergeHelper::merge(*other, *this);
139 150 }
140 151 else {
141 152 qCWarning(LOG_DataSeries())
142 153 << QObject::tr("Detection of a type of IDataSeries we cannot merge with !");
143 154 }
144 155 unlock();
145 156 dataSeries->unlock();
146 157 }
147 158
148 159 // ///////// //
149 160 // Iterators //
150 161 // ///////// //
151 162
163 DataSeriesIterator begin() override
164 {
165 return DataSeriesIterator{DataSeriesIteratorValue{
166 std::make_unique<dataseries_detail::IteratorValue<Dim, false> >(*this, true)}};
167 }
168
169 DataSeriesIterator end() override
170 {
171 return DataSeriesIterator{DataSeriesIteratorValue{
172 std::make_unique<dataseries_detail::IteratorValue<Dim, false> >(*this, false)}};
173 }
174
152 175 DataSeriesIterator cbegin() const override
153 176 {
154 177 return DataSeriesIterator{DataSeriesIteratorValue{
155 std::make_unique<dataseries_detail::IteratorValue<Dim> >(*this, true)}};
178 std::make_unique<dataseries_detail::IteratorValue<Dim, true> >(*this, true)}};
156 179 }
157 180
158 181 DataSeriesIterator cend() const override
159 182 {
160 183 return DataSeriesIterator{DataSeriesIteratorValue{
161 std::make_unique<dataseries_detail::IteratorValue<Dim> >(*this, false)}};
184 std::make_unique<dataseries_detail::IteratorValue<Dim, true> >(*this, false)}};
162 185 }
163 186
164 187 /// @sa IDataSeries::minXAxisData()
165 188 DataSeriesIterator minXAxisData(double minXAxisData) const override
166 189 {
167 190 return std::lower_bound(
168 191 cbegin(), cend(), minXAxisData,
169 192 [](const auto &itValue, const auto &value) { return itValue.x() < value; });
170 193 }
171 194
172 195 /// @sa IDataSeries::maxXAxisData()
173 196 DataSeriesIterator maxXAxisData(double maxXAxisData) const override
174 197 {
175 198 // Gets the first element that greater than max value
176 199 auto it = std::upper_bound(
177 200 cbegin(), cend(), maxXAxisData,
178 201 [](const auto &value, const auto &itValue) { return value < itValue.x(); });
179 202
180 203 return it == cbegin() ? cend() : --it;
181 204 }
182 205
183 206 std::pair<DataSeriesIterator, DataSeriesIterator> xAxisRange(double minXAxisData,
184 207 double maxXAxisData) const override
185 208 {
186 209 if (minXAxisData > maxXAxisData) {
187 210 std::swap(minXAxisData, maxXAxisData);
188 211 }
189 212
190 213 auto begin = cbegin();
191 214 auto end = cend();
192 215
193 216 auto lowerIt = std::lower_bound(
194 217 begin, end, minXAxisData,
195 218 [](const auto &itValue, const auto &value) { return itValue.x() < value; });
196 219 auto upperIt = std::upper_bound(
197 220 begin, end, maxXAxisData,
198 221 [](const auto &value, const auto &itValue) { return value < itValue.x(); });
199 222
200 223 return std::make_pair(lowerIt, upperIt);
201 224 }
202 225
203 226 std::pair<DataSeriesIterator, DataSeriesIterator>
204 227 valuesBounds(double minXAxisData, double maxXAxisData) const override
205 228 {
206 229 // Places iterators to the correct x-axis range
207 230 auto xAxisRangeIts = xAxisRange(minXAxisData, maxXAxisData);
208 231
209 232 // Returns end iterators if the range is empty
210 233 if (xAxisRangeIts.first == xAxisRangeIts.second) {
211 234 return std::make_pair(cend(), cend());
212 235 }
213 236
214 237 // Gets the iterator on the min of all values data
215 238 auto minIt = std::min_element(
216 239 xAxisRangeIts.first, xAxisRangeIts.second, [](const auto &it1, const auto &it2) {
217 240 return SortUtils::minCompareWithNaN(it1.minValue(), it2.minValue());
218 241 });
219 242
220 243 // Gets the iterator on the max of all values data
221 244 auto maxIt = std::max_element(
222 245 xAxisRangeIts.first, xAxisRangeIts.second, [](const auto &it1, const auto &it2) {
223 246 return SortUtils::maxCompareWithNaN(it1.maxValue(), it2.maxValue());
224 247 });
225 248
226 249 return std::make_pair(minIt, maxIt);
227 250 }
228 251
229 252 // /////// //
230 253 // Mutexes //
231 254 // /////// //
232 255
233 256 virtual void lockRead() { m_Lock.lockForRead(); }
234 257 virtual void lockWrite() { m_Lock.lockForWrite(); }
235 258 virtual void unlock() { m_Lock.unlock(); }
236 259
237 260 // ///// //
238 261 // Other //
239 262 // ///// //
240 263
241 264 /// Inserts at the end of the data series the value of the iterator passed as a parameter. This
242 265 /// method is intended to be used in the context of generating a back insert iterator
243 266 /// @param iteratorValue the iterator value containing the values to insert
244 267 /// @sa http://en.cppreference.com/w/cpp/iterator/back_inserter
245 268 /// @sa merge()
246 269 /// @sa value_type
247 270 void push_back(const value_type &iteratorValue)
248 271 {
249 272 m_XAxisData->push_back(QVector<double>{iteratorValue.x()});
250 273 m_ValuesData->push_back(iteratorValue.values());
251 274 }
252 275
253 276 protected:
254 277 /// Protected ctor (DataSeries is abstract). The vectors must have the same size, otherwise a
255 278 /// DataSeries with no values will be created.
256 279 /// @remarks data series is automatically sorted on its x-axis data
257 280 explicit DataSeries(std::shared_ptr<ArrayData<1> > xAxisData, const Unit &xAxisUnit,
258 281 std::shared_ptr<ArrayData<Dim> > valuesData, const Unit &valuesUnit)
259 282 : m_XAxisData{xAxisData},
260 283 m_XAxisUnit{xAxisUnit},
261 284 m_ValuesData{valuesData},
262 285 m_ValuesUnit{valuesUnit}
263 286 {
264 287 if (m_XAxisData->size() != m_ValuesData->size()) {
265 288 clear();
266 289 }
267 290
268 291 // Sorts data if it's not the case
269 292 const auto &xAxisCData = m_XAxisData->cdata();
270 293 if (!std::is_sorted(xAxisCData.cbegin(), xAxisCData.cend())) {
271 294 sort();
272 295 }
273 296 }
274 297
275 298 /// Copy ctor
276 299 explicit DataSeries(const DataSeries<Dim> &other)
277 300 : m_XAxisData{std::make_shared<ArrayData<1> >(*other.m_XAxisData)},
278 301 m_XAxisUnit{other.m_XAxisUnit},
279 302 m_ValuesData{std::make_shared<ArrayData<Dim> >(*other.m_ValuesData)},
280 303 m_ValuesUnit{other.m_ValuesUnit}
281 304 {
282 305 // Since a series is ordered from its construction and is always ordered, it is not
283 306 // necessary to call the sort method here ('other' is sorted)
284 307 }
285 308
286 309 /// Assignment operator
287 310 template <int D>
288 311 DataSeries &operator=(DataSeries<D> other)
289 312 {
290 313 std::swap(m_XAxisData, other.m_XAxisData);
291 314 std::swap(m_XAxisUnit, other.m_XAxisUnit);
292 315 std::swap(m_ValuesData, other.m_ValuesData);
293 316 std::swap(m_ValuesUnit, other.m_ValuesUnit);
294 317
295 318 return *this;
296 319 }
297 320
298 321 private:
299 322 /**
300 323 * Sorts data series on its x-axis data
301 324 */
302 325 void sort() noexcept
303 326 {
304 327 auto permutation = SortUtils::sortPermutation(*m_XAxisData, std::less<double>());
305 328 m_XAxisData = m_XAxisData->sort(permutation);
306 329 m_ValuesData = m_ValuesData->sort(permutation);
307 330 }
308 331
309 332 std::shared_ptr<ArrayData<1> > m_XAxisData;
310 333 Unit m_XAxisUnit;
311 334 std::shared_ptr<ArrayData<Dim> > m_ValuesData;
312 335 Unit m_ValuesUnit;
313 336
314 337 QReadWriteLock m_Lock;
315 338 };
316 339
317 340 #endif // SCIQLOP_DATASERIES_H
@@ -1,104 +1,106
1 1 #ifndef SCIQLOP_IDATASERIES_H
2 2 #define SCIQLOP_IDATASERIES_H
3 3
4 4 #include <Common/MetaTypes.h>
5 5 #include <Data/DataSeriesIterator.h>
6 6 #include <Data/SqpRange.h>
7 7
8 8 #include <memory>
9 9
10 10 #include <QString>
11 11
12 12 template <int Dim>
13 13 class ArrayData;
14 14
15 15 struct Unit {
16 16 explicit Unit(const QString &name = {}, bool timeUnit = false)
17 17 : m_Name{name}, m_TimeUnit{timeUnit}
18 18 {
19 19 }
20 20
21 21 inline bool operator==(const Unit &other) const
22 22 {
23 23 return std::tie(m_Name, m_TimeUnit) == std::tie(other.m_Name, other.m_TimeUnit);
24 24 }
25 25 inline bool operator!=(const Unit &other) const { return !(*this == other); }
26 26
27 27 QString m_Name; ///< Unit name
28 28 bool m_TimeUnit; ///< The unit is a unit of time (UTC)
29 29 };
30 30
31 31 /**
32 32 * @brief The IDataSeries aims to declare a data series.
33 33 *
34 34 * A data series is an entity that contains at least :
35 35 * - one dataset representing the x-axis
36 36 * - one dataset representing the values
37 37 *
38 38 * Each dataset is represented by an ArrayData, and is associated with a unit.
39 39 *
40 40 * An ArrayData can be unidimensional or two-dimensional, depending on the implementation of the
41 41 * IDataSeries. The x-axis dataset is always unidimensional.
42 42 *
43 43 * @sa ArrayData
44 44 */
45 45 class IDataSeries {
46 46 public:
47 47 virtual ~IDataSeries() noexcept = default;
48 48
49 49 /// Returns the x-axis dataset
50 50 virtual std::shared_ptr<ArrayData<1> > xAxisData() = 0;
51 51
52 52 /// Returns the x-axis dataset (as const)
53 53 virtual const std::shared_ptr<ArrayData<1> > xAxisData() const = 0;
54 54
55 55 virtual Unit xAxisUnit() const = 0;
56 56
57 57 virtual Unit valuesUnit() const = 0;
58 58
59 59 virtual void merge(IDataSeries *dataSeries) = 0;
60 60 /// @todo Review the name and signature of this method
61 61 virtual std::shared_ptr<IDataSeries> subDataSeries(const SqpRange &range) = 0;
62 62
63 63 virtual std::unique_ptr<IDataSeries> clone() const = 0;
64 64 virtual SqpRange range() const = 0;
65 65
66 66 // ///////// //
67 67 // Iterators //
68 68 // ///////// //
69 69
70 70 virtual DataSeriesIterator cbegin() const = 0;
71 71 virtual DataSeriesIterator cend() const = 0;
72 virtual DataSeriesIterator begin() = 0;
73 virtual DataSeriesIterator end() = 0;
72 74
73 75 /// @return the iterator to the first entry of the data series whose x-axis data is greater than
74 76 /// or equal to the value passed in parameter, or the end iterator if there is no matching value
75 77 virtual DataSeriesIterator minXAxisData(double minXAxisData) const = 0;
76 78
77 79 /// @return the iterator to the last entry of the data series whose x-axis data is less than or
78 80 /// equal to the value passed in parameter, or the end iterator if there is no matching value
79 81 virtual DataSeriesIterator maxXAxisData(double maxXAxisData) const = 0;
80 82
81 83 /// @return the iterators pointing to the range of data whose x-axis values are between min and
82 84 /// max passed in parameters
83 85 virtual std::pair<DataSeriesIterator, DataSeriesIterator>
84 86 xAxisRange(double minXAxisData, double maxXAxisData) const = 0;
85 87
86 88 /// @return two iterators pointing to the data that have respectively the min and the max value
87 89 /// data of a data series' range. The search is performed for a given x-axis range.
88 90 /// @sa xAxisRange()
89 91 virtual std::pair<DataSeriesIterator, DataSeriesIterator>
90 92 valuesBounds(double minXAxisData, double maxXAxisData) const = 0;
91 93
92 94 // /////// //
93 95 // Mutexes //
94 96 // /////// //
95 97
96 98 virtual void lockRead() = 0;
97 99 virtual void lockWrite() = 0;
98 100 virtual void unlock() = 0;
99 101 };
100 102
101 103 // Required for using shared_ptr in signals/slots
102 104 SCIQLOP_REGISTER_META_TYPE(IDATASERIES_PTR_REGISTRY, std::shared_ptr<IDataSeries>)
103 105
104 106 #endif // SCIQLOP_IDATASERIES_H
@@ -1,54 +1,56
1 1 #ifndef SCIQLOP_SQPITERATOR_H
2 2 #define SCIQLOP_SQPITERATOR_H
3 3
4 4 #include "CoreGlobal.h"
5 5
6 6 /**
7 7 * @brief The SqpIterator class represents an iterator used in SciQlop. It defines all operators
8 8 * needed for a standard forward iterator
9 9 * @tparam T the type of object handled in iterator
10 10 * @sa http://www.cplusplus.com/reference/iterator/
11 11 */
12 12 template <typename T>
13 13 class SCIQLOP_CORE_EXPORT SqpIterator {
14 14 public:
15 15 using iterator_category = std::forward_iterator_tag;
16 16 using value_type = const T;
17 17 using difference_type = std::ptrdiff_t;
18 18 using pointer = value_type *;
19 19 using reference = value_type &;
20 20
21 21 explicit SqpIterator(T value) : m_CurrentValue{std::move(value)} {}
22 22
23 23 virtual ~SqpIterator() noexcept = default;
24 24 SqpIterator(const SqpIterator &) = default;
25 25 SqpIterator(SqpIterator &&) = default;
26 26 SqpIterator &operator=(const SqpIterator &) = default;
27 27 SqpIterator &operator=(SqpIterator &&) = default;
28 28
29 29 SqpIterator &operator++()
30 30 {
31 31 m_CurrentValue.next();
32 32 return *this;
33 33 }
34 34
35 35 SqpIterator &operator--()
36 36 {
37 37 m_CurrentValue.prev();
38 38 return *this;
39 39 }
40 40
41 pointer operator->() const { return &m_CurrentValue; }
42 reference operator*() const { return m_CurrentValue; }
41 const T *operator->() const { return &m_CurrentValue; }
42 const T &operator*() const { return m_CurrentValue; }
43 T *operator->() { return &m_CurrentValue; }
44 T &operator*() { return m_CurrentValue; }
43 45
44 46 bool operator==(const SqpIterator &other) const
45 47 {
46 48 return m_CurrentValue.equals(other.m_CurrentValue);
47 49 }
48 50 bool operator!=(const SqpIterator &other) const { return !(*this == other); }
49 51
50 52 private:
51 53 T m_CurrentValue;
52 54 };
53 55
54 56 #endif // SCIQLOP_SQPITERATOR_H
General Comments 0
You need to be logged in to leave comments. Login now