#ifndef SCIQLOP_DATASERIES_H #define SCIQLOP_DATASERIES_H #include "CoreGlobal.h" #include #include #include #include #include #include #include // We don't use the Qt macro since the log is used in the header file, which causes multiple log // definitions with inheritance. Inline method is used instead inline const QLoggingCategory &LOG_DataSeries() { static const QLoggingCategory category{"DataSeries"}; return category; } template class DataSeries; namespace dataseries_detail { template class IteratorValue : public DataSeriesIteratorValue::Impl { public: explicit IteratorValue(const DataSeries &dataSeries, bool begin) : m_XIt(begin ? dataSeries.xAxisData()->cbegin() : dataSeries.xAxisData()->cend()), m_ValuesIt(begin ? dataSeries.valuesData()->cbegin() : dataSeries.valuesData()->cend()) { } IteratorValue(const IteratorValue &other) = default; std::unique_ptr clone() const override { return std::make_unique >(*this); } bool equals(const DataSeriesIteratorValue::Impl &other) const override try { const auto &otherImpl = dynamic_cast(other); return std::tie(m_XIt, m_ValuesIt) == std::tie(otherImpl.m_XIt, otherImpl.m_ValuesIt); } catch (const std::bad_cast &) { return false; } void next() override { ++m_XIt; ++m_ValuesIt; } void prev() override { --m_XIt; --m_ValuesIt; } double x() const override { return m_XIt->at(0); } double value() const override { return m_ValuesIt->at(0); } double value(int componentIndex) const override { return m_ValuesIt->at(componentIndex); } double minValue() const override { return m_ValuesIt->min(); } double maxValue() const override { return m_ValuesIt->max(); } private: ArrayData<1>::Iterator m_XIt; typename ArrayData::Iterator m_ValuesIt; }; } // namespace dataseries_detail /** * @brief The DataSeries class is the base (abstract) implementation of IDataSeries. * * It proposes to set a dimension for the values ​​data. * * A DataSeries is always sorted on its x-axis data. * * @tparam Dim The dimension of the values data * */ template class SCIQLOP_CORE_EXPORT DataSeries : public IDataSeries { public: /// @sa IDataSeries::xAxisData() std::shared_ptr > xAxisData() override { return m_XAxisData; } const std::shared_ptr > xAxisData() const { return m_XAxisData; } /// @sa IDataSeries::xAxisUnit() Unit xAxisUnit() const override { return m_XAxisUnit; } /// @return the values dataset std::shared_ptr > valuesData() { return m_ValuesData; } const std::shared_ptr > valuesData() const { return m_ValuesData; } /// @sa IDataSeries::valuesUnit() Unit valuesUnit() const override { return m_ValuesUnit; } SqpRange range() const override { if (!m_XAxisData->cdata().isEmpty()) { return SqpRange{m_XAxisData->cdata().first(), m_XAxisData->cdata().last()}; } return SqpRange{}; } void clear() { m_XAxisData->clear(); m_ValuesData->clear(); } /// Merges into the data series an other data series /// @remarks the data series to merge with is cleared after the operation void merge(IDataSeries *dataSeries) override { dataSeries->lockWrite(); lockWrite(); if (auto other = dynamic_cast *>(dataSeries)) { const auto &otherXAxisData = other->xAxisData()->cdata(); const auto &xAxisData = m_XAxisData->cdata(); // As data series are sorted, we can improve performances of merge, by call the sort // method only if the two data series overlap. if (!otherXAxisData.empty()) { auto firstValue = otherXAxisData.front(); auto lastValue = otherXAxisData.back(); auto xAxisDataBegin = xAxisData.cbegin(); auto xAxisDataEnd = xAxisData.cend(); bool prepend; bool sortNeeded; if (std::lower_bound(xAxisDataBegin, xAxisDataEnd, firstValue) == xAxisDataEnd) { // Other data series if after data series prepend = false; sortNeeded = false; } else if (std::upper_bound(xAxisDataBegin, xAxisDataEnd, lastValue) == xAxisDataBegin) { // Other data series if before data series prepend = true; sortNeeded = false; } else { // The two data series overlap prepend = false; sortNeeded = true; } // Makes the merge m_XAxisData->add(*other->xAxisData(), prepend); m_ValuesData->add(*other->valuesData(), prepend); if (sortNeeded) { sort(); } } // Clears the other data series other->clear(); } else { qCWarning(LOG_DataSeries()) << QObject::tr("Detection of a type of IDataSeries we cannot merge with !"); } unlock(); dataSeries->unlock(); } // ///////// // // Iterators // // ///////// // DataSeriesIterator cbegin() const override { return DataSeriesIterator{DataSeriesIteratorValue{ std::make_unique >(*this, true)}}; } DataSeriesIterator cend() const override { return DataSeriesIterator{DataSeriesIteratorValue{ std::make_unique >(*this, false)}}; } /// @sa IDataSeries::minXAxisData() DataSeriesIterator minXAxisData(double minXAxisData) const override { return std::lower_bound( cbegin(), cend(), minXAxisData, [](const auto &itValue, const auto &value) { return itValue.x() < value; }); } /// @sa IDataSeries::maxXAxisData() DataSeriesIterator maxXAxisData(double maxXAxisData) const override { // Gets the first element that greater than max value auto it = std::upper_bound( cbegin(), cend(), maxXAxisData, [](const auto &value, const auto &itValue) { return value < itValue.x(); }); return it == cbegin() ? cend() : --it; } std::pair xAxisRange(double minXAxisData, double maxXAxisData) const override { if (minXAxisData > maxXAxisData) { std::swap(minXAxisData, maxXAxisData); } auto begin = cbegin(); auto end = cend(); auto lowerIt = std::lower_bound( begin, end, minXAxisData, [](const auto &itValue, const auto &value) { return itValue.x() < value; }); auto upperIt = std::upper_bound( begin, end, maxXAxisData, [](const auto &value, const auto &itValue) { return value < itValue.x(); }); return std::make_pair(lowerIt, upperIt); } std::pair valuesBounds(double minXAxisData, double maxXAxisData) const override { // Places iterators to the correct x-axis range auto xAxisRangeIts = xAxisRange(minXAxisData, maxXAxisData); // Returns end iterators if the range is empty if (xAxisRangeIts.first == xAxisRangeIts.second) { return std::make_pair(cend(), cend()); } // Gets the iterator on the min of all values data auto minIt = std::min_element( xAxisRangeIts.first, xAxisRangeIts.second, [](const auto &it1, const auto &it2) { return SortUtils::minCompareWithNaN(it1.minValue(), it2.minValue()); }); // Gets the iterator on the max of all values data auto maxIt = std::max_element( xAxisRangeIts.first, xAxisRangeIts.second, [](const auto &it1, const auto &it2) { return SortUtils::maxCompareWithNaN(it1.maxValue(), it2.maxValue()); }); return std::make_pair(minIt, maxIt); } // /////// // // Mutexes // // /////// // virtual void lockRead() { m_Lock.lockForRead(); } virtual void lockWrite() { m_Lock.lockForWrite(); } virtual void unlock() { m_Lock.unlock(); } protected: /// Protected ctor (DataSeries is abstract). The vectors must have the same size, otherwise a /// DataSeries with no values will be created. /// @remarks data series is automatically sorted on its x-axis data explicit DataSeries(std::shared_ptr > xAxisData, const Unit &xAxisUnit, std::shared_ptr > valuesData, const Unit &valuesUnit) : m_XAxisData{xAxisData}, m_XAxisUnit{xAxisUnit}, m_ValuesData{valuesData}, m_ValuesUnit{valuesUnit} { if (m_XAxisData->size() != m_ValuesData->size()) { clear(); } // Sorts data if it's not the case const auto &xAxisCData = m_XAxisData->cdata(); if (!std::is_sorted(xAxisCData.cbegin(), xAxisCData.cend())) { sort(); } } /// Copy ctor explicit DataSeries(const DataSeries &other) : m_XAxisData{std::make_shared >(*other.m_XAxisData)}, m_XAxisUnit{other.m_XAxisUnit}, m_ValuesData{std::make_shared >(*other.m_ValuesData)}, m_ValuesUnit{other.m_ValuesUnit} { // Since a series is ordered from its construction and is always ordered, it is not // necessary to call the sort method here ('other' is sorted) } /// Assignment operator template DataSeries &operator=(DataSeries other) { std::swap(m_XAxisData, other.m_XAxisData); std::swap(m_XAxisUnit, other.m_XAxisUnit); std::swap(m_ValuesData, other.m_ValuesData); std::swap(m_ValuesUnit, other.m_ValuesUnit); return *this; } private: /** * Sorts data series on its x-axis data */ void sort() noexcept { auto permutation = SortUtils::sortPermutation(*m_XAxisData, std::less()); m_XAxisData = m_XAxisData->sort(permutation); m_ValuesData = m_ValuesData->sort(permutation); } std::shared_ptr > m_XAxisData; Unit m_XAxisUnit; std::shared_ptr > m_ValuesData; Unit m_ValuesUnit; QReadWriteLock m_Lock; }; #endif // SCIQLOP_DATASERIES_H