Project

General

Profile

Wiki » History » Version 23

Theo Stassen, 28/07/2023 06:57 PM

1 3 Laurent Mirioni
h1. En bref
2
3 5 Laurent Mirioni
4 6 Laurent Mirioni
5 1 Laurent Mirioni
h1. Infos en vrac (à réarranger)
6
7 2 Laurent Mirioni
h2. Site Web JUICE officiel
8
9
https://www.cosmos.esa.int/web/juice
10
11 1 Laurent Mirioni
h2. JUICE Livelink
12
13
Les présentations des différents SWT sont disponibles sur le livelink de JUCE : https://dms.cosmos.esa.int/cs/cs?func=ll&objId=3169397&objAction=browse&viewType=1 (demander les identifiants à Laurent si besoin)
14
15 6 Laurent Mirioni
h2. JUICE/RPWI Ground segment piipeline 
16 1 Laurent Mirioni
17 6 Laurent Mirioni
Le traitement des données SCM (spectres et formes d'ondes) sera intégré au pipeline du consortium RPWI (lead. Uppsala). 
18
19
Voir le plan de développement ici : https://hephaistos.lpp.polytechnique.fr/redmine/documents/182 (à mettre à jour -> demander à D. Andrews)
20 3 Laurent Mirioni
Gitlab: https://spis.irfu.se/rpwi/rpwi_pipeline/ (compte personnel avec adresse e-mail LPP)
21
Documentation: https://www.space.irfu.se/juice/rpwi_pipeline/index.html (demander les identifiants à Laurent si besoin)
22 7 Theo Stassen
23
Lien pour tutoriel pratique "Python Documentation Using Sphinx Autosummary" : https://medium.datadriveninvestor.com/python-documentation-using-sphinx-f6dc87e1286b
24 8 Theo Stassen
25 12 Theo Stassen
h2. Notes sur l'avancée du code
26
27
- actuellement, les tests de comparaison sont effectués pour un fs = 31.995 comme idl le fait de base, on obtient des résultats où la phase du kernel résultant vaut +/- 40, et on obtient pareil (à epsilon prêt) en python.
28
Si on force le code à utiliser fs = 32 à la place, les résultats changent, la phase dans le kernel IDL vaut +/- 1e-11 , et 0 en python (donc très proche)
29
30 13 Theo Stassen
-Note d'un problème en cours (qui n'est pas trop problématique mais ennuyeux quand même) : Problème d'arrondi qui provque différences entre IDL et python :
31
32
les résultats des tests de deconvo vec varient en fonction de fs, df et surtout la manière différente dont idl et python arrondissent df et f_i lors de leur creéation/manipulation Dépendant de comment on déclare df et f (f_i) en idl et de comment on le write dans le log, les résultat du test python en utilisant comme f_i celui du log vont être positifs par epsilon 1e-4 ou non. 
33
Et je n'arrive juste pas à faire en sorte que prendre f_i de generate_freq_array en python donne des résultats positif, parceque les valeurs sont toujours différentes du f_i extrait du log.
34
35
Examples de situation :
36
fe = 31.9995, df = fe/float(nk), frq = findgen * df, write %23.16e (setting classique), python utilise ref_table -> fonctionne
37
fe = 32 -> fonctionne (logique, vu que pas besoin d'arrondi)
38
fe = 31.9995, df = fe/float(nk), frq = dindgen * df, write %23.16e , python utilise ref_table -> echec
39
(setting classique) + python utilise generate_freq_array (que ce soit round on pas) -> echec
40
fe = 31.9995, df = fe/float(nk) puis round, frq = findgen * df, write %23.16e (setting classique), python utilise generate_freq_array (round au même niveau) -> echec
41
42 12 Theo Stassen
43
h2. Documentation code
44 8 Theo Stassen
45
Le readme.md contenu dans le code uploadé sur le github possède une explication complète de la structure du fichier IDL deconvo_vec qui contient tout ce que l'on traduit en python actuellement, et la structure du fichier python deconvo_vec équivalent et de toutes les fonctions qui en découle (en cours de construction).
46 11 Theo Stassen
Je copie une version ici (visuellement plus agréable dans github:
47 1 Laurent Mirioni
48 10 Theo Stassen
**Documentation FR de l'avancé du portage IDL -> Python.**
49 9 Theo Stassen
50 10 Theo Stassen
Actuellement on se concentre sur le portage de la fonction _mms_scm_deconvo_vec_
51 1 Laurent Mirioni
52 10 Theo Stassen
Cette fonction prend en entrée une waveform et des metadatas.
53
L'object est d'effectuer la calibration continue de la waveform en convolvant 
54
le signal par un kernel que l'on construit au préalable.
55 1 Laurent Mirioni
56 10 Theo Stassen
Les différentes étapes de _mms_scm_deconvo_vec_ sont :
57 1 Laurent Mirioni
58 10 Theo Stassen
1. (on précentre la waveform d'entrée)
59
2. On souhaite créer un kernel de taille n_k, on commence donc par former un "complex spectrum" **s** de base
60
  (un array de complexes 1+0j, de taille n_k) 
61
3. On applique à **s** la fonction _mms_scm_corgain_ (même fichier)
62
   1. On crée un array de fréquence **f** linéairement croissant de pas df = f_e / n_k (f_e = fréquence d'échantillonnage), de longueur n_k
63
     auquel on soustrait f_e la seconde moitié, on a donc un array de fréquence allant de 0 -> fe/2 puis -fe/2 -> 0
64
       (le format nécessaire pour la fft)
65
   2. On calcule la réponse **c** renvoyée par _mms_corgain_
66
      1. La fonction récupère les données dans le fichier de référence des antennes (dont on a donné le path),
67
       qui contient, pour chaque antenne, un array de fréquence et pour chaque fréquence la réponse complexe référence 
68
       correspondante.
69
      2. Si **f** contient des fréquences en dehors du range du fichier de référence, 
70
       on considère que la réponse de l'antenne va être calculée pour la fréquence référence la plus proche
71
      3. On obtient la réponse de l'antenne, calculée pour chaque valeur de **f** par interpolation 
72
       des données de référence.
73
      4. On multiplie cette réponse par la valeur absolue de la réponse du filtre dfb,
74
       implémenté dans _mms_scm_dfb_dig_filter_resp_ (qui renvoie une réponse pour chaque fréquence de **f**)
75
      5. On multiplie cette réponse par la réponse du filtre bessel, implémenté dans _bessel_filter_resp_ 
76
       (qui renvoie une réponse pour chaque fréquence de **f**)
77
      6. On renvoie cette réponse
78
   3. Maintenant que l'on a **c**, on divise **s** par **c** (on applique la correction au spectre d'entrée en somme)
79
   4. La phase du terme de fréquence 0 de la réponse doit valoir 0 pour pouvoir appliquer la FFT,
80
     on set ce terme à la valeur absolue de sa valeur complexe
81
4. On a maintenant un **s** qui a subit la correction de l'antenne + dfb + bessel
82
5. On applique un filtre passe bande par _mms_scm_filtspe_ entre f_min et f_max donnés en entrée
83
6. On applique une transformée de fourier inverse, non encore normalisée, à **s**,
84
on obtient alors ce que le code appelle le kernel (qui n'est pas encore le kernel final)
85
7. Maintenant on prend seulement la partie réelle (sachant que l'imaginaire doit être négligeable si les calculs sont corrects)
86
8. On shift le kernel 
87
9. On lui applique la fenetre de convolution (Hanning, coscub, trapezoid, etc)
88
10. On normalise le kernel
89
11. On peut maintenant effectuer la convolution (_mms_scm_fastconvol_) pour la waveform d'entrée et le kernel calculé
90 9 Theo Stassen
91 10 Theo Stassen
Dans le code python, nous avons une fonction **_deconvo_vec_** correspondant à _mms_scm_deconvo_vec_ : 
92 9 Theo Stassen
93 10 Theo Stassen
1. (on précentre la waveform d'entrée)
94
2. On crée l'array de fréquence **f** en premier ( étape 3.i)
95
2. On crée le kernel non normalisé (-> étapes 2 à 6 sauf 3.i), en utilisant la fonction _**kernel_creation**_
96
   1. On crée le complex spectrum de base **spectrum** équivalent à **s** ( étape 2)
97
   2. On applique la fonction _**corr_gain_ant**_ à **spectrum** avec **f** comme argument (étape 3.ii:iv)
98
      1. On obtient **gain_array** (équivalent de **c**), initialement la réponse de l'antenne calculée par la fonction _**ant_resp**_ (3.ii.a:c) :
99
         1. La fonction récupère les données du fichier de référence (3.ii.a)
100
         2. Elle règle le problème de valeur hors range (3.ii.b)
101
         3. On effectue l'interpolation pour obtenir la réponse de l'antenne (3.ii.c) 
102
      2. On multiplie **gain_array** par la valeur absolue de la réponse du filter dfb, implémenté dans _**dfb_filter**_ (3.ii.d)
103
      3. On multiplie **gain_array** par la réponse du filter bessel, implémenté dans _**bessel_filter**_ (3.ii.e)
104
      4. On divise **spectrum** par **gain_array** (3.iii)
105
      5. On modifie le terme de fréquence 0 (3.iv)
106
   3. On applique une filtre passe bande à **spectrum** (_**bandpass_filter**_) (5)
107
   4. On applique la transformée de fourier inverse à **spectrum** (_**fft**_) et obtient **kernel** (6)
108
3. On vérifie que la partie réelle est bien négligeable et on prend uniquement la partie réelle. (7)
109
4. On shift le kernel (8))
110
5. On applique la fenêtre de convolution choisie à **kernel** en utilisant les fonction _**conv_windows**_ (9)
111
6. On normalise le kernel (10)
112 14 Theo Stassen
113
114
h2. Notice Installation
115 15 Theo Stassen
116 23 Theo Stassen
Voir le readme.md
117
118
En ce qui concerne le pycharm, ce qui suit est toujours valide :
119
120 14 Theo Stassen
1. Installer Pycharm (J'utilise la version professional 2022.3.2 mais ça devrait fonctionner sans problème quelque soit la version https://www.jetbrains.com/fr-fr/pycharm/download/ )
121 16 Theo Stassen
2. Faire un git clone du code dans le répertoire de son choix (il faut donc avoir git installé) : git clone https://stassen@hephaistos.lpp.polytechnique.fr/rhodecode/GIT_REPOSITORIES/LPP/DATA-PROCESSING/SCM-Waveforms-Calibration
122
3. Ouvrir Pycharm, Aller dans File -> Open -> Chercher le répertoire où se trouve le code -> Ouvrir
123 17 Theo Stassen
124
h3. Installation Pylint (Pour PEP8) :
125 18 Theo Stassen
126 17 Theo Stassen
1. Pour installer le module pylint de pycharm : File -> Settings -> Plugins : chercher pylint dans la liste, et l'installer. 
127
2. Pylint apparaît en bas du menu de gauche dans File -> Settings (si non, relancer pycharm) 
128
3. Dans le terminal de pycharm, en étant bien avec le venv activé, taper 'pip install pylint'
129
4. Dans File -> Settings -> Pylint, pour le "Path to Pylint executable", normalement cela affiche Auto-detected : path/pylint -> Appuyer sur test, si test validé -> Appuyer sur Ok. Si le path n'est pas trouvé directement il faut trouver le path du pylint dans le venv du projet, et le copier là. 
130
5. Une fois que c'est fait, en bas à côté des icônes terminal etc se trouve Pylint, le module qui permet d'analyser le PEP8 de ce que l'on souhaite. 
131
6. Pycharm affichera également les PEP8 warnings dans le code directement.
132 19 Theo Stassen
133
h2. Modifications à faire dans le code IDL (corrections d'erreurs) pour que les résultats soient les mêmes que ceux obtenus par python
134
135 20 Theo Stassen
1. Lors de la lecture du fichier textuel de calibration de l'antenne, le résultat est placé dans un complex array simple > il ne lit pas correctement tout les digits du fichier -> mettre dcomplexarr à la place
136 22 Theo Stassen
2. Dans mms_scm_calibration, quand on appelle mms_scm_deconvo_vec pour chaque antenne, le code passe 1 comme numéro d'antenne pour le deconvo vec de x, 3 pour Y et 2 pour Z, ce qui est une erreur puisque quand le code appelle plus loin
137
le fichier de calibration, on a bien x=1, y=2, z=3, ce qui provoque une erreur non négligeable, les kernel de y et z sont tout simplement interverti (le seul endroit où le kernel dépend de l'antenne c'est la réponse de l'antenne, on on interverti celle-ci). > donc très important, remplacer 3 par 2 et 2 par 3 lors des appels "mms_scm_deconvo_vec, yfo, " et "mms_scm_deconvo_vec, zfo, "