Project

General

Profile

Wiki » History » Revision 10

Revision 9 (Theo Stassen, 15/03/2023 04:36 PM) → Revision 10/24 (Theo Stassen, 15/03/2023 04:50 PM)

h1. En bref 



 h1. Infos en vrac (à réarranger) 

 h2. Site Web JUICE officiel 

 https://www.cosmos.esa.int/web/juice 

 h2. JUICE Livelink 

 Les présentations des différents SWT sont disponibles sur le livelink de JUCE : https://dms.cosmos.esa.int/cs/cs?func=ll&objId=3169397&objAction=browse&viewType=1 (demander les identifiants à Laurent si besoin) 

 h2. JUICE/RPWI Ground segment piipeline  

 Le traitement des données SCM (spectres et formes d'ondes) sera intégré au pipeline du consortium RPWI (lead. Uppsala).  

 Voir le plan de développement ici : https://hephaistos.lpp.polytechnique.fr/redmine/documents/182 (à mettre à jour -> demander à D. Andrews) 
 Gitlab: https://spis.irfu.se/rpwi/rpwi_pipeline/ (compte personnel avec adresse e-mail LPP) 
 Documentation: https://www.space.irfu.se/juice/rpwi_pipeline/index.html (demander les identifiants à Laurent si besoin) 

 Lien pour tutoriel pratique "Python Documentation Using Sphinx Autosummary" : https://medium.datadriveninvestor.com/python-documentation-using-sphinx-f6dc87e1286b 

 h2. Avancées code 

 Le readme.md contenu dans le code uploadé sur le github possède une explication complète de la structure du fichier IDL deconvo_vec qui contient tout ce que l'on traduit en python actuellement, et la structure du fichier python deconvo_vec équivalent et de toutes les fonctions qui en découle (en cours de construction). 
 Je copie une version ici : 

 **Documentation Documentation FR de l'avancé du portage IDL -> Python.** Python. 

 Actuellement on se concentre sur le portage de la fonction _mms_scm_deconvo_vec_ mms_scm_deconvo_vec 

 Cette fonction prend en entrée une waveform et des metadatas. 
 L'object est d'effectuer la calibration continue de la waveform en convolvant  
 le signal par un kernel que l'on construit au préalable. 

 Les différentes étapes de _mms_scm_deconvo_vec_ mms_scm_deconvo_vec sont : 

 1. 

     (on précentre la waveform d'entrée) 
 2. 
     On souhaite créer un kernel de taille n_k, on commence donc par former un "complex spectrum" **s** s de base 
   (un array de complexes 1+0j, de taille n_k)  
 3. 
     On applique à **s** s la fonction _mms_scm_corgain_ mms_scm_corgain (même fichier) 
    1. 
     On crée un array de fréquence **f** f linéairement croissant de pas df = f_e / n_k (f_e = fréquence d'échantillonnage), de longueur n_k 
      auquel on soustrait f_e la seconde moitié, on a donc un array de fréquence allant de 0 -> fe/2 puis -fe/2 -> 0 
        (le format nécessaire pour la fft) 
    2. 
     On calcule la réponse **c** c renvoyée par _mms_corgain_ 
       1. mms_corgain 
         La fonction récupère les données dans le fichier de référence des antennes (dont on a donné le path), 
        qui contient, pour chaque antenne, un array de fréquence et pour chaque fréquence la réponse complexe référence  
        correspondante. 
       2. 
         Si **f** f contient des fréquences en dehors du range du fichier de référence,  
        on considère que la réponse de l'antenne va être calculée pour la fréquence référence la plus proche 
       3. 
         On obtient la réponse de l'antenne, calculée pour chaque valeur de **f** f par interpolation  
        des données de référence. 
       4. 
         On multiplie cette réponse par la valeur absolue de la réponse du filtre dfb, 
        implémenté dans _mms_scm_dfb_dig_filter_resp_ mms_scm_dfb_dig_filter_resp (qui renvoie une réponse pour chaque fréquence de **f**) 
       5. f) 
         On multiplie cette réponse par la réponse du filtre bessel, implémenté dans _bessel_filter_resp_  
        bessel_filter_resp (qui renvoie une réponse pour chaque fréquence de **f**) 
       6. f) 
         On renvoie cette réponse 
    3. 
     Maintenant que l'on a **c**, c, on divise **s** s par **c** c (on applique la correction au spectre d'entrée en somme) 
    4. 
     La phase du terme de fréquence 0 de la réponse doit valoir 0 pour pouvoir appliquer la FFT, 
      on set ce terme à la valeur absolue de sa valeur complexe 
 4. 
     On a maintenant un **s** s qui a subit la correction de l'antenne + dfb + bessel 
 5. 
     On applique un filtre passe bande par _mms_scm_filtspe_ mms_scm_filtspe entre f_min et f_max donnés en entrée 
 6. 
     On applique une transformée de fourier inverse, non encore normalisée, à **s**, 
 s, on obtient alors ce que le code appelle le kernel (qui n'est pas encore le kernel final) 
 7. 
     Maintenant on prend seulement la partie réelle (sachant que l'imaginaire doit être négligeable si les calculs sont corrects) 
 8. 
     On shift le kernel  
 9. 
     On lui applique la fenetre de convolution (Hanning, coscub, trapezoid, etc) 
 10. 
     On normalise le kernel 
 11. 
     On peut maintenant effectuer la convolution (_mms_scm_fastconvol_) (mms_scm_fastconvol) pour la waveform d'entrée et le kernel calculé 

 Dans le code python, nous avons aurons une fonction **_deconvo_vec_** deconvo_vec correspondant à _mms_scm_deconvo_vec_ mms_scm_deconvo_vec :  

 1. 

     (on précentre la waveform d'entrée) 
 2. 
     On crée l'array de fréquence **f** f en premier ( (-> étape 3.i) 
 2. 
     On crée le kernel non normalisé (-> étapes 2 à 6 sauf 3.i), en utilisant la fonction _**kernel_creation**_ 
    1. kernel_creation 
     On crée le complex spectrum de base **spectrum** spectrum équivalent à **s** ( s (-> étape 2) 
    2. 
     On applique la fonction _**corr_gain_ant**_ corr_gain_ant à **spectrum** spectrum avec **f** f comme argument (étape (-> étape 3.ii:iv) 
       1. 
         On obtient **gain_array** gain_array (équivalent de **c**), c), initialement la réponse de l'antenne calculée par la fonction _**ant_resp**_ (3.ii.a:c) ant_resp (->3.ii.a:c) : 
          1. 
             La fonction récupère les données du fichier de référence (3.ii.a) 
          2. (->3.ii.a) 
             Elle règle le problème de valeur hors range (3.ii.b) 
          3. (->3.ii.b) 
             On effectue l'interpolation pour obtenir la réponse de l'antenne (3.ii.c)  
       2. (->3.ii.c) 
         On multiplie **gain_array** gain_array par la valeur absolue de la réponse du filter dfb, implémenté dans _**dfb_filter**_ (3.ii.d) 
       3. dfb_filter (->3.ii.d) 
         On multiplie **gain_array** gain_array par la réponse du filter bessel, implémenté dans _**bessel_filter**_ (3.ii.e) 
       4. bessel_filter (->3.ii.e) 
         On divise **spectrum** spectrum par **gain_array** (3.iii) 
       5. gain_array (->3.iii) 
         On modifie le terme de fréquence 0 (3.iv) 
    3. (->3.iv) 
     On applique une filtre passe bande à **spectrum** (_**bandpass_filter**_) (5) 
    4. spectrum (bandpass_filter) (->5) 
     On applique la transformée de fourier inverse à **spectrum** (_**fft**_) spectrum (fft) et obtient **kernel** (6) 
 3. kernel (->6) 
     On vérifie que la partie réelle est bien négligeable et on prend uniquement la partie réelle. (7) 
 4. (->7) 
     On shift le kernel (8)) 
 5. (->8)) 
     On applique la fenêtre de convolution choisie à **kernel** kernel en utilisant les la fonction _**conv_windows**_ (9) 
 6. conv_window (->9) 
     On normalise le kernel (10) 



 (->10)