- 1/61

JUICE Radio and Plasma Wave Instrument

Low Frequency Receiver digital interface

JUI-IAP-RPWI-LF-DIF Issue: 01, Rev. 1<u>5</u>4

Prepared by:	Affiliation:	Signature:	Date
Jan Soucek	IAP		04/10/2023
Ludek Uhlir	IAP		
Radek Lan	IAP		
Ondrej Santolik	IAP		
Verified by:			
Approved by:			

- 2/61 -

Change Record

Issue	Rev.	Date	Authors	Modifications
1	0	17/11/2015	J. Soucek	Initial release
1	1	10/5/2016	J. Soucek, O.Santolik	DPU processing added
1	2	28/11/2016	L. Uhlir, J. Soucek	Register interface updated. Spectral processing added. Added FFT data product. Major changes throughout.
1	3	17/2/2017	L. Uhlir, J. Soucek	Register interface updated. Spectral processing added. EM2 version.
1	4	14/3/2017	L. Uhlir, J. Soucek	 Added SRAM uncorrectable error register 1, 2, 3 (address 0x0013, 0x0014, 0x0015) Updated data frame system anomalies (0x0009) Add memory read/write registers (address 0x0016, 0x0017)
1	5	18/10/2017	L.Uhlir, J. Soucek	 Removed SRAM EDAC error counter Added CWF, DWF, WFS buffer overflow Added SW configuration and TM packet structure
1	6	17/05/2018	L.Uhlir, J. Soucek	 PPS counter value can be read without read flag Reorganize cap 12.1 Main configuration structure table Rename WFS_NUM_SAMPS to WFS_NUMSAMP_BLOCKS Fixed register 0xe description (FPGA firmware version) added branch version, fixed bit positions scm calibration sequence config moved from PWR reg to STAT register added power up FFTbin include mask initialization (all bins included) added FFTbin mask reload on the fly feature – setting appropriate bit in status register will inform SMX to latch and use actual FFTbin mask configuration change STATUS register: data frame ready bit to read only added LFR registers to be used for instrument HK packet chapter
1	7	21/06/2018	L. Uhlir, J. Soucek	FPGA version 15 released
1	8			Added link test pattern Update chapter 12: SRAM memory organization (removed FFT bin mask) Register "FFT bins summation mask 1 and mask2" is write only Added SCM OC 1ms glitch filter Added SCM OC scm power up 200 ms timeout Added LF self PPS feature FPGA version 16 released Update system anomalies AMBA performance meter replaced by CRC16 Extended FFT Sum product description

			FPGA: Removed CWF FIR compensator filter Added register 0xA: SMX number of accumulation description, time computation formula Added WFS period computation formula in register 0x8 Added WFS length computation formula in register 0x9 Improved Spectral bins description in register 0xF Fixed Waveform snapshots (WFS) size description
1	9	22/11/2019	Version applicable to final FPGA firmware V22. Fix LFR SRAM memory organization – update table SMX bin table addresses. Clarified the use of the time register 0x00 in section 5. Added "trigger snapshot bit" in register 0x06 (new in firmware V22) Changed SCM calibration signal mechanism (new in V22). Added description in section 6. Updates to TM/TC in sections 14 and 15.
1	10	28/12/2020	Version applicable to final PFM/FS FPGA firmware V22 and software 1.1. Improve DAC bit behavior description in 0xC register. Corrected SID values Improve CHCFGREQ bit description in the data product 0x6 register description Add invalid command flag set condition in write command status register (0x10) Various updates to SW config and data products.
1	11	4/10/2021	Updates of software configuration and TM for software version 2.0.
1	12	05/10/2022	 Fixed/completed format of some TM packets in section 15. Added and extended sections 16 and 17, describing data processing, SW configuration, triggering etc.
1	13	01/02/2023 04/10/2023	 Renamed "exclude spectral mask" to "include spectral mask" for consistency with the SW implementation Numerous updates and fixes in PCE config description, TM description etc. Added TRIGGER_INFO description for TSWF Added appendix 2 with description of configurations Added section 16.5 on interaction with sequencer Updated LF configurations in Section 19 for final SW(2.0 implementation)
			 SW2.0 implementation Added more details to config structure description in Section 14.1

- 4/61 -

Table of Contents

1	Applicable and reference documents					
2	LFR data products (FPGA)7					
3	Ad	ldress map7				
4	De	escription of individual registers				
5	Со	mmanding of LFR15				
6	LF	R registers to be used for instrument HK packet17				
7	Da	ta transfer and format				
8	Int	roduction				
9	Da	ta frame layout				
10		Description of individual fields19				
11		Datarates21				
12		Memory organization (FPGA)				
13		FPGA side processing of spectral matrices22				
14		LF software configuration24				
1	.4.1	Processing compression encoding (PCE) configuration – LF main configuration structure24				
1	.4.2	Spectral bin tables (SB_TABLE)				
1	.4.3	Include frequency mask table (EFM table)28				
15		LF TM packets (SW interface to OBC)29				
1	5.1	TM_LF_RAW				
1	5.2	TM_LF_RSWF				
1	5.3	TM_LF_TSWF31				
1	.5.4	TM_LF_DWF				
1	.5.5	TM_LF_SM				
1	.5.6	TM_LF_BP0				
1	.5.7	TM_LF_BP1				
1	.5.8	TM_LF_DWFS				
1	.5.9	TM_LF_BP2				
1	5.10	D TM_LF_STAT40				
1	15.11 Common header data41					
16		DPU-side software processing of LF data42				
1	.6.1	Basic operation and configuration of LF software43				

16.2	2 ⊦	ligh resolution waveform snapshots (TM_LF_RSWF and TM_LF_TSWF)43
16.3	3 C	Decimated Waveform at 763/2^N sps (TM_LF_DWF and TM_LF_DWFS)43
16.4	4 S	Spectral data products (TM_LF_SM, TM_LF_BP0-2)44
1	6.4.1	L TM_LF_SM data product:44
1	6.4.2	2 TM_LF_BP0 data product:44
1	6.4.3	3 TM_LF_BP1 data product:45
1	6.4.4	4 TM_LF_BP2 data product:45
1	6.4.5	5 Configuration of spectral bins and include masks45
1	6.4.6	6 Handing of reaction wheel data45
16.5	5 li	nteraction with RPWI software sequencer46
17	Trig	ggering, dust detection and statistics (TM_LF_STAT)46
17.1	1 B	Basic triggering using LP detection (LF_ ALGO_EXTERNAL)47
17.2	2 A	Autonomous triggering with dust detection (LF_ ALGO_DUST_WAVE)48
17.3	3 Т	riggering based on BP249
17.4	4 C	Common additional triggering settings (handling of long snapshots, immediate trigger, dump
cycl	ing).	
18	App	pendix 1: BP2 spectral parameter calculation description50
18.1	1 C	Configuration parameters:
18.2	2 C	Calibration tables/matrices:
18.3	3 C	Definitions:
18.4	4 li	nitialization steps (to be done on EV_CONFIG, before first matrix calculation)51
18.5	5 R	Routine processing, for every SM matrix received:
18.6	5 F	inal processing after averaging of all matrices is completed:
19	Арр	pendix 2: Defaults configurations in SW2.056
19.1	1 B	Built-in LF configurations
19.2	2 S	standard E-field mux configs used in the above LF configurations
19.3	3 L	Jse of LF configurations in RPWI operational sequences59

1 Applicable and reference documents

Applicable documents

This document responds to the requirements of the documents listed in the following table:

Mark	Reference	Title of the document	Version	Date
	JUI-IRFU-RPWI-ICD-	Interface Control Document for	1.11	12/06/2018
	059_i1.11	Low Frequency (LF)		
402	JUI-IRFU-RPWI-MX-	Compliance, Traceability and	2.6	30/10/2015
ADZ	021_i2.6	Verification Matrix for RPWI		
102	JUI-IRFU-RPWI-TN-	Technical note - Serial link	1.0	14/6/2013
AD3	100_i1.0	protocol		

Reference documents

The present document refers to the documents listed in the following table:

Mark	Reference	Title of the document	Version	Date
•				
•				

2 LFR data products (FPGA)

LFR FPGA shall produce a combination of the following data products as configured by software in the Data product configuration register (0x0006). Any combination of the data product is allowed with the exception that CWF and WFS cannot be enabled simultaneously.

Waveform snapshots (WFS): Waveform snapshots are blocks of 8 x 128 x N_CWF_frames (see register WFS length 0x9) digitized at 48.828 ksps or 24.414 ksps buffered internally in the LF and sent after the collection has ended.

Continuous waveform (CWF): A continuous stream of samples digitized at 48.828 ksps or 24.414 ksps (8 channels).

Decimated waveform (DWF): A continuous stream of decimated data digitized at 762 sps.

Spectral matrices (SM): Blocks of 8 x 8 x (number of frequency bins) 64-bit numbers sent at a low cadence (at most once per second).

Raw FFT (FFT): A diagnostic product allowing to transmit complex FFTs for al channels continuously. For test only, not to be used in flight.

FFT Sum (FSUM): Component sum power spectra calculated at full time resolution (every 1024 samples). One spectrum of 1024 frequencies transmitted per packet. Two spectra can be configured obtained by summing components specified in register 0x18 (register name: FFT bins summation mask 1 and mask2). The output 16 bits samples are custom float numbers composed of 6 bits exponent of base2 (MSbits) and 10 bits of mantissa (LSbits). This number is sum of selected components. Each component have their real part squared summed with imaginary part squared (RE^2+IM^2). The sample decimal value is decoded from sample bits as:

- exponent = sample_bits(15 downto 10)
- mantissa = sample_bits (9 downto 0)
- sample_value = mantissa << exponent

DCFG: A special diagnostic packet containing current full configuration and status of LF (addresses 0x0000 to 0x01FF) of the LF configuration memory, with actual time, except 0x12 register – Parity error counter register. The space between the end of LF configuration map (0x01FF) and the end of the packet is filled by a testpattern (0x0, 0x5555555, 0xAAAAAAAA, 0xFFFFFFF) varying every 32 bits. The rest of the packet Transmitted as a single frame on request (when register 0x0006 is written with bit 15 set to 1).

3 Address map

All commanding of LF and readout of status information by the DPU is performed by reading and writing the address space exported by LFR. Map of the LF address space visible to DPU over link is detailed. Only the first 0x0200 words are used.

Address	Function/content	R/W	Size	Power on
				value
0x0000	Time (21 bits skew + PPS + R/W bits)	RW	32 bit	N/A
0x0002	HW switch configuration 1	RW	16 bit	0
0x0003	HW switch configuration 2	RW	16 bit	0
0x0004	HW switch configuration 3	RW	16 bit	0

JUICE RPWI LF digital interface

Ref: JUI-IAP-RPWI-LF-DIF Issue: 01 Revision: 154 Date: 04/10/2023

- 8/61 -

0x0005	HW switch configuration 4		RW	16 bit	0
0x0006	Data product configuration		RW	16 bit	0
0x0007	PPS to start acquisition	0-15	RW	16 bit	0
0x0008	WFS period [in data frames]		RW	16 bit	0
	[0 = only one, > 0 periodic acquisition,				
	minimum WFS length+1]				
0x0009	WFS length-1 in blocks of 1024	0-3071	RW	16 bit	0
	samples				
0x000A	NAS: Number of averaged spectra in	0-4095	RW	16 bit	0
	SM – 1 (e.g. 7 corresponds to 8				
	averaged spectra)				
0x000B	PWR control				0
0x000C	Status register				0
0x000D	Test pattern configuration		RW	16 bit	0
0x000E	Firmware version		R	16 bit	Actual
					version
0x000F	Number of spectral bins (NFB-1). Must	3-127	RW	16-bits	255 =
	be a multiple of 4.				unconfigured
0x0010	LFR address map write commands	0-511	RW		0
	counter				
0x0011	Instrument anomalies (same as data		RW		0
	frame @ address 0x1009)				
0x0012	8 bit Parity error counter	0-256	R		0
0x0013	SRAM uncorrectable error register 1				
0x0014	SRAM uncorrectable error register 2				
0x0015	SRAM uncorrectable error register 3				
0x0016	Memory read/write registers		R/W		
0x0018	FFT bins summation mask 1 and		Write		
	mask2		only		
0x0019	reserved				
0x0020 -	Include mask. A bitmask of FFT bins to		Write	1024 bits	All bits set to
0x005F	be included in spectral matrix		only	(64*16bit)	1
	averaging.				
0x0100-	Edges of spectral bins (2*NFB values).	0-1023	Write	2*NFB	Undefined.
0x01FF	An array of pairs (first bin index, last		only	16bit	
	bin index).			numbers	

4 Description of individual registers

Time0 register (two 16 bit words, addresses 0x0000 and 0x0001): A pair of registers used to read out and set the current local time of LF.				
Bits	Function/content Allowed values			
Bits 1 (addresses offset 0x0000)				
0-7 (LSB)	8 most significant bits of skew			
8-11	PPS counter			
12	reserved	0		
13	Enable self-PPS mode (incoming PPS is ignored)	0,1		
14	Set PPS value bit (write to set PPS value). Reset by	0,1		

	instrument			
15	Read instrument skew time. Reset by instrument	0,1		
Bits 1 (addresses offset 0x0001)				
0-15	16 least significant bits of skew			

The PPS counter is a 4-bit counter incremented by LF with every PPS pulse. The skew is incremented internally with the clock frequency of 781.25 kHz (50 MHz / 64). The skew is reset to 0 with every PPS pulse, when PPS counter is incremented.

It is possible to read the PPS counter value from register 0x0000, as long as it is least 1us after PPS signal. To read PPS it is not necessary to write bit 15.

To read the skew time, a two-step procedure is needed:

- Write the register 0x0000 with a value of 0x8000.
- Read the content of registers 0x0000 and 0x0001.

Register 0x0000 can also be used to set the PPS value. PPS value is set by writing this register, with bit 14 set to 1 and bit 15 set to 0. The value at bits 2-5 is then set as the new PPS value. Other bits are ignored. **The new value is applied when LF receives the next PPS pulse, not immediately.**

The following 4 registers are used to configure hardware switches on LFR. Each bit corresponds to one switch.

HW switch configuration register (four 16 bit words, addresses offset 0x0002-0x0004)							
Bits	Hardware signal	Function					
HW switch cor	HW switch configuration register 1 (addresses offset 0x0002)						
O (LSB)	AD1 SCM X EN	Enable opamp in AD1 channel					
		(writeable only when AD1234 REF					
		EN is set)					
1	AD2 SCM Y EN	Enable opamp in AD2 channel					
		(writeable only when AD1234 REF					
		EN is set)					
2	AD3 SCM Z EN	Enable opamp in AD3 channel					
		(writeable only when AD1234 REF					
		EN is set)					
3	AD4 ESUMED EN	Enable opamp in AD3 channel					
		(writeable only when AD1234 REF					
		EN is set)					
4	AD1234 REF EN	Enable references for AD1234					
5-7	Reserved						
8	AD4 ESUMED MUX A						
9	AD4 ESUMED MUX B						
10	AD4 ESUMED MUX C						
11 - 15	Reserved						
HW switch configuration register 2 (addresses offset 0x0003)							
O (LSB)	E SUM GO	SC potential sum gain setting 1					
1	E SUM G1	SC potential sum gain setting 2					
2	E SUM E1 EN	Enable probe E1 in the sum					
3	E SUM E2 EN	Enable probe E2 in the sum					

		1
4	E SUM E3 EN	Enable probe E3 in the sum
5	E SUM E4 EN	Enable probe E4 in the sum
6-14	Reserved	
15	SCME RLD	Reload part 1 of HW switches.
		Configures E SUM multiplexers,
		AD1, AD2, AD3 and AD4
HW switch con	nfiguration register 3 (addresses offset 0x0004)	
O (LSB)	AD5 EDINMX1 EN	(writeable only when AD5678 REF
		EN is set)
1	AD6 EDINMX2 EN	(writeable only when AD5678 REF
		EN is set)
2	AD7 EDINMX3 EN	(writeable only when AD5678 REF
		EN is set)
3	AD8 ESUMED EN	(writeable only when AD5678 REF
		EN is set)
4	AD5678 REF EN	
5-7	Reserved	
8	AD8 ESUMED MX A	
9	AD8 ESUMED MX B	
10	AD8 ESUMED MX C	
11 - 15	Reserved	
HW switch con	figuration register 4 (addresses offset 0x0005)	
0 (LSB)	ED INMX1P A	
1	ED INMX1P B	
2	ED INMX1N A	
3	ED INMX1N B	
4	ED INMX2P A	
5	ED INMX2P B	
6	ED INMX2N A	
7	ED INMX2N B	
8	ED INMX3P A	
9	ED INMX3P B	
10	ED INMX3N A	
11	ED INMX3N B	
12	ED INMXS ENN	
13-14	Reserved	
15 (MSB)	ED RLD	reload part 2 of HW switches.
		Configures ED multiplexers, AD5.
		AD6, AD7 and AD8

Data product configuration register (address 0x0006): Specified which data products are to be		
collected and transmitted.		
Bit	Function/content	Allowed values
0 (LSB)	DWF - Enable decimated WF data	
1	SMX - Enable spectral matrices	
2	WFS - Waveform snapshots enabled	Only one bit of 2-3 can be set
3	CWF - Continuous waveform (CWF) produced.	Only one bit of 2-3 can be set
4	FFT - Enable raw FFT data product.	

- 11/61

5	FFT summed	
6	Trigger snapshot immediately. To be used without bit	0
	14 set.	
7	Spare	0
8	If set, sampling of 24.4 kHz is used instead of 48.8	
	(this affects CWF, SMX and WFS data, not DWF).	
9-13	Spares	0
14	CHCFGREQ - Change configuration request – must be	When set the instrument is
	set to apply new product configuration in bits (0-8).	reinitialized and the bit is
		cleared with a PPS match
15 (MSB)	DCFG - Dump parameters. Send a packet with	
	complete configuration.	

Note: if the data products bits are changed before the CHCFGREQ bit is cleared then the invalid command flag (register 0x10) is set

WFS start configuration register (address 0x0007):		
Bit	Function/content	Allowed values
0-3	PPS start time of snapshot acquisition data CWF	0-15
4-15	Spares	0

WFS period configuration register (address 0x0008):		
Bit	Function/content	Allowed values
0-15	Value = Period-1 Unit is a CWF data frame, one CWF data frame (8channels*128samples) is collected in 128/Fs ≈ 2.62 ms for Fs ≈ 48kHz	 If Value = 0 then only one snapshot is generated minimum value = wfs_length_value+1 (if less then adjusted by FPGA) maximum value = 2^16-1
	Example for Fs \approx 48kHz: Value for ~1sec period:	
	1/0.00262-1 ≈ 380	

Note: LFR accommodates only one buffer for WFS data. If the buffer is filled up then it must be sent out before a new data acquisition begins – thus the configured snapshot period can be prolonged.

WFS length configuration register (address 0x0009):		
Bit	Function/content	Allowed values
0-15	Value = WFS snapshot length-1	Minimum value = 0
		Maximum value = 3071
	Unit is a CWF data frame (8channels*128samples)	
	Example: Value for ~4ksamps/channel: 4096/128-1 ≈	
	31	

SMX number of accumulated spectra register (address 0x000A):		
Bit	Function/content	Allowed values
0-15	Value = Number of SMX accumulations-1	Minimum value = 0
		(nonaccumulated SMXs)
	single SMX is composed of 8x8 of 64bit numbers	Maximum value = 4095

JUICE RPWI LF digital interface

- 12/61 -

(512bytes), one SMX is accumulated in 1024/Fs ≈ 20.97 ms for Fs ≈ 48kHz	(4096 accumulations)
Example for Fs ≈ 48kHz: Value for ~10sec period: 10/0.02097-1 ≈ 475	

PWR control register (address 0x000B): Register controlling powering on/off the ADC blocks of LF	
and generation of SCM calibration signal.	
Bit	Function/content
0	Power on SCM part
1	Power on ED part
2-4	Reserved
5	Disable SCM OC protection (10ms)
6	Power on SCM sensor
7	Force power supply units to synchronize with LFR clock
8-10	LFR link push data delay prescaler ('111' - > ~2620us (11% duty cycle), '000' -> ~330us
	(50% duty cycle), default '001' -> ~660us (33% duty cycle))
11	Spares (must be 0)
12-15	Reset by magic number 11 (0xB)

STATUS register (address 0x000C):	
Bit	Function/content
0	data frame ready (read only)
1	Set to inform SMXP to reload FFT bin mask. Bit is self cleared.
2	Enable the calibration sequence. The calibration signal is triggered and this bit is cleared by the PPS signal. Note: Once it is set the bit cannot be cleared. In this case an invalid command report is generated. Note: This bit can be set only when SCM sensor is on.
3-15	Spares (must be 0)

Artificial input register (address 0x000D): Register allowing to configure a test mode, where ADC inputs are replaced by test patterns. For testing only.	
Bit	Function/content
0-1	CWF data processing output
	0: processed data (default)
	 1: constant per channel (constant = 256*channel_number[0-7])
	• 2: sawtooth per channel (channel X output incremented by 1 every 2 ^x sample,
	where X=[0,,7])
2-3	SCM ADCs output configuration
	• 0: ADC samples (default)
	 1: constant per channel (constant = 256*channel_number[0-3])
	• 2: sawtooth per channel (channel X output incremented by 1 every 2 ^x sample,
	where X=[0,,3])
5-6	Reserved

- 13/61 -

6-7	 ED ADCs output configuration 0: ADC samples (default) 1: constant per channel (constant = 256*channel_number[0-3]) 2: sawtooth per channel (channel X output incremented by 1 every 2^x sample, where X=[0,,3])
8	ADCs samples act as constants in CWF buffer per channel and cwfbuffer number: sample_value = channel_number*16 + cwf_buffer_number*256 sample_value is always positive
9	FFT constants per channel
10	Link test pattern (per 4 bytes) 0x00000000, 0xF, 0x5, 0xA, Data frame headers stay with the actual data product configuration.

Firmware version register (address 0x000E): Read only register containing firmware version	
information.	
Bit	Function/content
0-3	serial link interface IP core version (2)
4-7	LFR FPGA design branch version (0)
8-14	LFR FPGA design version (13)
15	LFR FPGA develop design flag (0)

Number of spectral bins (address 0x000F): Number of spectral bins register	
Bit	Function/content
0-6	Number of SMX bins (NFB-1). Must be a multiple of 4. Read-write.
	single SMX is composed of 8x8 of 64bit numbers (512bytes), one SMX is accumulated in 1024/Fs ≈ 20.97 ms for Fs ≈ 48kHz
7	Read only bit indicating that the register contains an undefined power-on value. Bit is
	set to zero after first write to register.
8-15	Reserved (0)

Write commands status (address 0x0010): Register indicating the status of last write operation.	
Bit	Function/content
0-8	Write counter: 9-bit wrapping counter incremented by one with each write command
	received. Read only. Reset on LF soft reset.
9	Invalid command flag is set to 1 if :
	- SMX product is enabled before number of spectral bins has been set.
	 Data product configuration changed without change-request bit set
	 If DAC is enabled when DAC is not powered-on
	 If DAC is disabled when already enabled (disabled only by instrument)
	- If changing data products bits of register 0x6 while the CHCFGREQ is set
	Can be set to zero by writing zero to this register.
10-15	Reserved

Instrument anomalies register (address 0x0011): Instrument anomalies (see data frame @ address	
0x1009). Can be written to reset the flags.	
Bit	Function/content
0-15	See data frame @ address 0x1009

Parity error counter (address 0x0012): Serial link parity error counter. Read only register	
Bit	Function/content
0-7	Link Parity error counter, ceiling to 255. Reset with LF reset or configuration change.
8-15	Spares (must be 0)

SRAM uncorrectable error register 1 (address 0x0013): SRAM multibit error information register	
Bit	Function/content
0-15	MSbits of address (16 to 31) of the first error – read only

SRAM uncorrectable error register 2 (address 0x0014): SRAM multibit error information register	
Bit	Function/content
0	Clear error - when set bits "new error" is cleared. Bit clears itself
1	New error – read only
2-15	LSbits of address (2 to 15) of the first error – read only

SRAM uncorrectable error register 3 (address 0x0015): SRAM multibit error information register	
Bit	Function/content
0-7	reserved
8-11	Number of amba master issuing the transaction – read only
12-14	Size of the transaction – read only
15	Master write signal – read only

Memory read/write register 1 (address 0x0016): memory read/write register 1	
Bit	Function/content
0-15	MSbits of read/write address (16 to 31) or MSbits of read data (16 to 31)

Memory read/write register 2 (address 0x0017): memory read/write register 2	
Bit	Function/content
0	Read from memory trigger if it is changed from 0 -> 1 (lower priority)
1	Write to memory trigger if it is changed from 0 -> 1 (higher priority) – if bit zero (read
	bit) is '1' then data value of '111' is written, else data value of '000' is written.
2-15	LSbits of read/write address (2 to 15) or LSbits of read data (2 to 15)

Note: useful for SRAM read/write test. RAM address starts at 0xa0000000 and occupies 8MB (up to 0xa07fffff).

FFT bins summation mask 1 and mask2 (address 0x0018): FSUM product configuration

- 15/61 -

Bit	Function/content
0-7	FFT sum packet 1 bin mask, default '11100000' (SCM X,Y,Z)
8-15	FFT sum packet 1 bin mask, default '00001110' (ADC 5,6,7)

Spectral matrix FFT bins include bit mask register (address 0x0020 - 0x005f): example of 0x0020	
Bit	Function/content
0	FFT bin number 0 flag (1 to include bin, 0 to skip the bin), default '1'
1 - 14	FFT bin number 1 - 14 flag (1 to include bin, 0 to skip the bin), default '1'
15	FFT bin number 15 flag (1 to include bin, 0 to skip the bin), default '1'

Spectral matrix FFT bins include bit mask register (address 0x0020 - 0x005f): example of 0x005f		
Bit	Function/content	
0	FFT bin number 1008 flag (1 to include bin, 0 to skip the bin), default '1'	
1-14	FFT bin number 1009 - 1022 flag (1 to include bin, 0 to skip the bin), default '1'	
15	FFT bin number 1023 flag (1 to include bin, 0 to skip the bin), default '1'	

5 Commanding of LFR

When powered on LFR will start up in standby mode, where:

- Analog sections are powered down
- No packets are transmitted

To configure LFR into science mode, the software has to perform the following steps:

- 1) Configure hardware switches (write words at address 0x0002, 0x0003,0x0004, 0x0005, 0x000B)
- 2) If SMX product is desired (corresponding bit will be set in register 0x0006):
 - Set number of spectral bins (NFB) in register 0x000F.
 - Upload and configure NFB spectral bins (0x0100 to 0x01FF).
 - Configure mask of bins to include (0x0020 to 0x005F) if desired. Otherwise a default is used (all bins will be included in averaging).
 - Configure number of averaged spectra in register 0x000A
- 3) Write the PPS value to start data acquisition in register 0x0007
- 4) If WFS snapshot acquisition is required, set the WFS period in register 0x0008.
- 5) Write register 0x0006, setting the bits corresponding to the requested data products. This actually enables the science mode. The acquisition starts on the next PPS signal.

Changing configuration / **re-synchronizing:** Every time register 0x0006 is written (with bit CHCFGREQ = 1). New configuration is applied and data acquisition is stopped and re-started on the PPS pulse specified in register 0x0007. This has to be done for every change in instrument configuration. If no configuration changes are made before writing to 0x0006, the same configuration applies, but data acquisition is re-synchronized to the specified PPS pulse.

Generating SCM calibration signal: LF can transmit a synthetic signal to SCM with the following configuration:

• Upload the waveform to be transmitted as 1024 samples (unsigned 16-bit integers) by writing to addresses 0x200-0x5FF. This waveform will later be played back through the DAC (DAC range is

- 16/61

12 bits, so full useful range is between ~100 and 4000. The full range is translated to an output voltage range of about 0 to +5V).

- Configure all LF registers in the desired science configuration same as above.
 - Before enabling the configuration by register 0x0006, write register 0x0C to set bit 2 to 1.
- Enable science mode as normal. When the data acquisition starts on the next PPS pulse, the SCM signal is generated immediately.
- The Uploaded waveform is played back in the following manner:
 - 0 It is played to the DAC at a frequency of 524 kHz (2^{19} Hz)
 - **o** Initially every 64th sample is sent to output and this is repeated 4 times.
 - 0 Next every 32th sample is sent to output and this is repeated 4 times.
 - Next every 16th sample is sent to output and this is repeated 4 times.
 - 0

•

- o Full waveform is played at DAC frequency of 524 kHz (four times).
- Next the full waveform is played (4 times) at half of the initial sampling frequency (at 262 kHz)
- Then the sampling frequency is halved at every step until the sampling frequency gets to 256 Hz.
- This way, if one uploads to LF one period of a sine wave (centered around 2048 integer value), we get a logarithmic frequency sweep starting at 32768 Hz and ending at 0.25 Hz. At each step, four wave periods are transmitted and frequency is halved at every step.

6 LFR registers to be used for instrument HK packet

LFR register for instrument HK packet				
Length	LFR register	name	Register description	
[bytes]	address			
4	NA	SID	Fixed 0x10	
4	0x0000	TIME	Subunit time	
2	0x0002	HW_SW_CFG1	LFR switches configuration 1	
2	0x0003	HW_SW_CFG2	LFR switches configuration 2	
2	0x0004	HW_SW_CFG3	LFR switches configuration 3	
2	0x0005	HW_SW_CFG4	LFR switches configuration 4	
2	0x0006	DATA_PRODUCT_CFG	Data product configuration	
2	0x0007	PPS_TO_START	Start data acquisition at defined PPS value	
2	0x0008	WFS_CFG _PER	WFS product configuration: period value	
2	0x0009	WFS_CFG_LNG	WFS product configuration: length value	
2	0x000a	SMX_CFG_NAS	SMX product configuration: number of	
			averaged spectras	
2	0x000b	PWR_CFG	Power configuration	
2	0x000c	STATUS	LFR status	
2	0x000d	TEST_PATTERNS_CFG	Test patterns configuration	
2	0x000e	FPGA_FW_VERSION	FPGA firmware version	
2	0x000f	SMX_CFG_NFB	SMX product configuration: number of	
			spectral bins	
2	0x0010	WRITE_REGS_STAT	Status of written values to the LFR registers	
2	0x0011	ANOMALIES	Subunit anomalies detected	
2	0x0012	LINK_ERR_CNT	Interface link parity counter	
4	0x0013	SRAM_UC_ERR	SRAM uncorrectable error	

- 18/61

7 Data transfer and format

All data is transmitted as data frames of 1024 16-bit words + header of 10 16-bit words using the push transfer type of the serial link. Each data frame has an identical format described below (section Data frame layout). The data product contained in this frame is determined by the content of the first 16-bit word of the header.

- Waveform snapshots are always sent as frames of 8x128 16-bit words. Unused channels contain random data. The Acquisition time correspond to the first sample of snapshot and only the PPS value is valid (skew should be 0)
- DWF and CWF sent as frames of 8x128 16-bit words. The Acquisition time corresponds to the first sample in the frame.
- Spectral matrices are sent as 8x8 (64) sets of 64-bit numbers corresponding to a single frequency (512 bytes per frequency). NFB frequency bins are transmitted sequentially, 2 frequencies per frame. Note: for SM, the Acquisition time correspond to the first **sample** of the last FFT frame in the matrix.

Special **DCFG** diagnostic packet (data id == 0x8000) is sent by LF on request, when 1 is written to DCFG bit in register 0x0006. This packet contains the dump of the configuration memory of LF (addresses 0x0000 to 0x01FF). This packet has a standard dateframe layout with a standard header and length.

8 Introduction

This document provides a specification of communication protocol for the Low Frequency receiver board of the RPWI instrument for JUICE. The document describes both the interface between the FPGA and DPU as well as the configuration and structure of the data products transmitted by RPWI to the spacecraft.

9 Data frame layout

This table specified the format of the data frame. All data products are transmitted in frames formatted according to this specification using the push operation. The length of the data frame shall probably be fixed to 1024 + 12 = 1036 16-bit words (2072 bytes).

Address	Function/content	R/W	Size
0x0000	Data product (bit mask)	R	16 bit
0x0001	System information register	R	16 bit
0x0002	Acquisition time (21 bits skew + PPS)	R	32 bit
0x0004	Sequential number of frame (wrapped)	R	16 bit
0x0005	Artefacts (overflows etc.)	R	16 bit
0x0006	HW switch configuration word 1 & 2	R	16 bit
0x0007	HW switch configuration word 3	R	16 bit
0x0008	HW switch configuration word 4	R	16 bit
0x0009	System anomalies	R	16 bit
0x000A	Sequential number of this frame in one data	R	16 bit
	product (e.g. SM or snapshot)		
0x000B	Total number of frames in one data product	R	16 bit
	(e.g. SM or snapshot)		

0x000C

Start of data

R N x 16 bit

10 Description of individual fields

Data product (data frame, address 0x1000): A bit mask identifying the type of data in this packet.		
Bit	Function/content	
0 (LSB)	Decimated WF (DWF) data	Only one of bits 0-4 can be
1	Spectral Matrices	set.
2	Waveform snapshots	
3	Continuous waveform (CWF)	
4	FFT of CWF	
5	FFT sum	
6-7	Spares	0
8	Decimation (0 – 4x, 1 – 8x)	
9-14	Spares	0
15 (MSB)	LFR register address map	

System information register (data frame, address 0x1001): Contains info about LF system status.		
Bit	Function/content	Severity
0-15	CRC16 CCITT (version 0xFFFF) computed from 0x0002	failure

The acquisition time (time when data was measured) is encoded in 2 16-bit words at 0x1002 and 0x1003 (see the format below). Usually, for DWF, CWF and WFS waveform products, the time corresponds to the first sample in the given data frame. A special case are Spectral Matrices, where the time corresponds to the first sample of the last FFT accumulated in the matrix. So the time corresponding to the beginning of the averaging has to be reconstructed by subtracting NAS*1024*cwf_sampling_period from the acquisition time (where NAS is the content of register 0x000A, number of averaged FFT spectra – 1, and the cwf_sampling_period is either 1/48828.125 or 1/24414.063 sec, depending on decimation setting).

Acquisition time (data frame, address 0x1002): higher part		
Bit	Function/content	
0-7	PPS skew MSbits	
8-9	spares	
10-13	PPS	
14-15	spares	
Acquisition time (data frame, address 0x1003): lower part		
Bit	Function/content	
0-15	PPS skew LSbits	

Artefacts (data frame, address 0x1005): A bit mask identifying ADC overranges.		
Bit	Function/content	
0	ADC n.1 overrange detected	
1	ADC n.2 overrange detected	
2	ADC n.3 overrange detected	
3	ADC n.4 overrange detected	

- 20/61 -

4	ADC n.5 overrange detected
5	ADC n.6 overrange detected
6	ADC n.7 overrange detected
7	ADC n.8 overrange detected
8-13	Reserved
14	SMX: new FFT bins mask applied
15	FFT sum packet generated from FFT summation
	bitmask 1 (value '0'), or from bitmask 2 (value '1')

Data product (data frame, address 0x1006): HW switch configuration word 1&2.		
Bit	Function/content	
HW switch con	ifiguration register 1	
0	AD1 SCM X EN	
1	AD2 SCM Y EN	
2	AD3 SCM Z EN	
3	AD4 ESUMED EN	
4	AD1234 REF EN	
5	AD4 ESUMED MUX A	
6	AD4 ESUMED MUX B	
7	AD4 ESUMED MUX C	
HW switch con	ifiguration register 2	
8	E SUM GO	
9	E SUM G1	
10	E SUM E1 EN	
11	E SUM E2 EN	
12	E SUM E3 EN	
13	E SUM E4 EN	
14-15	reserved	

System anomalies (data frame, address 0x1009): A bit mask identifying instrument anomalies in			
this packet. Flags are cleared by an instrument reset.			
Bit	Function/content	Severity	
0	DMAF amba CWF buffer half-full detected	Warning	
1	DMAF amba CWF buffer full detected	Failure	
2	DMAF amba DWF buffer half-full detected	Warning	
3	DMAF amba DWF buffer full detected	Failure	
4	FFTP input CWF buffer overflow	Failure	
5	SMXP input FFT buffer overflow	Failure	
6	FSUM input FFT buffer overflow	Failure	
7	VIDA input CWF buffer overflow	Failure	
8	VIDA input DWF buffer overflow	Failure	
9	VIDA input WFS buffer overflow	Failure	
10	VIDA input FFT buffer overflow	Failure	

11	VIDA input SMX buffer overflow	Failure
12	VIDA spectral bin write failure	Warning
13	DAC write sample failure	Failure
14	SRAM EDAC multi-bit error detected	Warning
15	SCM overcurrent flag	Warning

11 Datarates

This section describes the data products generated by the LF receiver toward the DPU (not the actual RPWI products, which are further processed in software). The LF receiver will produce the telemetry at the following rates:

CWF (Continuous waveform): One frame of 8x128 samples + header transmitted every 2.6 milliseconds for 48.8 ksps sampling rate (~382 packets per second) continuously. For the reduced sampling rate of 24.4 ksps, the datarate is decrease by half to one frame per 24.4 ksps. When CWF is produced, waveform snapshots are not collected.

WFS (Waveform snapshots): This product is sent in the same manner as the CWF product, with the difference that it is not transmitted continuously. LF will transmit a series of frames corresponding to one snapshots (at most 6 MB of data = 8x393216 samples) followed by a gap when no data is transmitted. The rate of packet transmission can be decreased if necessary.

DWF: One frame of 8x128 samples + header transmitted every 168 milliseconds (6 packets per second). If enabled, this product is transmitted continuously.

SM (spectral matrices):

- The rate of spectral matrices depends on the configuration parameters NFB (number of frequency bins) and NAS (number of averages spectra -1).
- Spectral matrices are sent as 8x8 (64) sets of 64-bit numbers corresponding to a single frequency (512 bytes per frequency). NFB frequency bins are transmitted sequentially, 4 frequencies per frame. The size of each frame is 2048 bytes (or 1024 16-bit words) + header, same as for the waveform products.
- One full matrix (512*NFB bytes = NFB/4 packets) is sent every 20.9*(NAS+1) milliseconds.
- Minimum value for NAS is 2, corresponding to a rate SM_RATE of one matrix every 63 milliseconds (~16 matrices per second).
- A limit is imposed on the product SM_RATE * NFB < 512. This implies that for NAS=2 (SM_RATE =~16 matrices per second), the maximum number of bins is 32 and for NFB = 128 at most 4 matrices can be produced every second. This worst case rate corresponds to 128 SM packets every second.
- Typical SM rate will be one matrix of 32 frequencies every 4 seconds (2 packets per second).

FFT Sum (FSUM): When enabled the component sum power spectra is calculated every 1024 CWF samples that takes 21ms and 2072 bytes of the LFR packet. If two FFT sum power spectra are configured then two LFR packets are generated every 21 ms. For the datarate one FFT sum power spectra consumes ~98,7 kBps (48.8 ksps), for two FFT sum power spectra it consumes ~197,3 kBps (97.5 ksps).

	Ref: JUI-IAP-RPWI-LF-DIF
JUICE RPWI LF digital interface	Issue: 01 Revision: 1 <u>5</u> 4 Date: 04/10/2023
	- 22/61 -

- 23/61

12 Memory organization (FPGA)

The LFR SRAM memory of 8 Mbytes (8388608 bytes) is organized as follows:

Table 12-1 LFR SRAM organization (values are in HEX format). Note that the address used by the SRAM controller is prefixed with 0xA0 (Address 0 = 0xA0000000)

CWF	000000	8	256	2048	00800	008000	2048	524288	088000	0.67109
DWF	00800	8	16	128	000880	088000	2048	32768	090000	2.684142
FFT	-	-	16 -		-	090000	32768	524288	110000	0.335545
SMX	000880	8	8	64	0008C0	110000	65536	524288	190000	
WFS	0008C0	8	3072	24576	0068C0	200000	2048	6291456	800000	8.053084
auxiliary										
SMX TABLE	190000	2	256	512	190200					
CAL WF	190200	2	1024	2048	190A00					

13 FPGA side processing of spectral matrices

Notation used:

- NFB is number of frequency bins between 4 and 128. Uploaded via TC.
- n = index of output frequency bin (n=1...NFB).
- i = row index of spectral matrix (i=1...8)
- j = column index of spectral matrix (j=1...8)
- f = FFT frequency index. Index to the raw FFT (f = 1...1024)
- $F_c(f) = FFT$ of channel "c", frequency bin f. Complex number 16-bits. Stored in SRAM.
- bs(n) first frequency in output bin number n. bs(n) is an index to $F_c(f)$ and is between 1..1024. bs(n) is uploaded as a table via TC at LFR initialization.
- be(n) last frequency in output bin number n. be(n) is an index to $F_c(f)$ and is between 1..1024. be(n) is uploaded as a table via TC at LFR initialization.
- ASM_{ij}(n) = output accumulated spectral matrix. For each output bin "n" it is 8 x 8 x 64 bits. Stored in external RAM. Real numbers. Real part of cross spectrum for j > i, imaginary for i
 < j and auto spectrum (real) for i == j.
- include_mask = bitmask of 1024 bits. If a bit is set to 1, the corresponding FFT bin is included in averaging in frequency.

Algorithm for SM calculation:

```
for n = 1 to NFB
    if (first_accumulated_fft)
        ASM<sub>ij</sub>(n) = 0 for i=1..8, j=1..8
    else
        Load ASM<sub>ij</sub>(n) from external RAM for i=1..8, j=1..8
    end
```

```
- 24/61
```

```
for f = bs(n) to be(n)
        if (include_mask(f) == 0)
            continue
        end
        load F_c(f) for all c=1..8 from RAM to internal buffer.
        for i=1..8
            for j=1..8
                if (j >= i)
                  ASM_{ij}(n) += Re[F_i(f)] * Re[F_j(f)] + Im[F_i(f)] * Im[F_j(f)]
                else
                  ASM_{ij}(n) += Im[F_i(f)] * Re[F_j(f)] - Re[F_i(f)] * Im[F_j(f)]
                end
            end
        end
    end
    Write ASM<sub>ij</sub>(n) back to external RAM for i=1..8, j=1..8
end
```

14 LF software configuration

14.1 Processing compression encoding (PCE) configuration – LF main configuration structure

This structure contains a complete configuration of LF, excluding the spectral bin configuration tables described in next section.

Offset [byte]	ID	Size [bits]	Range	Description
Hardwa	re and general configuration	[bits]		
0	DATA_PRODUCTS	16		Bitmask specifying which data products to send (see below)
Decima	ted waveform (DWF) configurat	tion		
2	DWF_DECIMATION	8	0 to 5	Bits 0-2: Decimation rate (0 = none, 1 = 2x,, 5 = 32x)
				Bits 3-6: Spare
				Bit 7: If set to 1, use the floating point FIR filter with the same kernel as LP. This is only valid with decimation 32x (DWF_DECIMATION = 0x85)
3	DWF_CHANNEL_MASK	8		Bitmask of DWF components to transmit.
Periodi	c waveform snapshot (WFS) con	figuration		
4	WFS_LENGTH	16		Length of WFS snapshots in (in blocks of 128 samples)
6	WFS_PERIOD	16		Period of WFS snapshots (in blocks of 128 samples)
8	WFS_CHANNEL_MASK	8		Bitmask of WFS components to transmit.
9	ULTRA_SETTINGS	8		Additional settings.
				Bit 7 (MSB): If set, disable trigger during interference intervals.
				Bit 6: If set, use trivial calibration tables (all = 1) for BP1/BP2 calculations.
				Bits 0-5: not used, spare
Decima	ted Waveform snapshot (DWFS) configura	tion	
10	DWFS_LENGTH	16		Length of DWFS snapshots in (in blocks of 128 samples)
12	DWFS_PERIOD	16		Period of DWFS snapshots (in blocks of 128 samples)
14	DWFS_CHANNEL_MASK	8		Bitmask of DWFS components to transmit.
Triggere	ed waveform snapshot configur	ation		
15	TRIG_NUM_SNAP_STAT	8	0-255	Number of snapshots to process for one STAT- 1
16	TRIG_DUMP_CYCLE	16		Number of snapshots to process before autonomous trigger dump (if bit 7 of TRIG_ALGO

				not set)
18	TRIG_ALGO	8		Trigger algorithm configuration (see below)
19	TRIG_CHANNEL	8		Bits 0-2 (low): ADC channel to use for detection
				Bit 3: not used
				Bits 4-7 (high): segment to trigger on in case of
				extra long snapshots
	BP0/BP1/BP2 common config	uration		
20	BP_MASK_EB	8		Bitmask of B and E to include in averaging. For
				indicates the F-components to be used in
				Poynting calculation (B is ignored for BP2).
21	BP_AVG_TIME	8	1-15	Number of SM to average in time to produce one
				BP - 1
22	BP_AVG_FREQ_LOG2	8	0-3	Log2 of number of adjacent frequency bins to
				average.
	SM config			
23	SM_NUM_FREQ_BINS	8	4-128	Number of frequency bins. Must be a multiple of 4.
24	SM_NUM_AVG	16	1-4095	Number of averaged spectra
26	SM_BINEDGES_TABLE_INDEX	8	0-15	(index to SB_TABLE table)
27	SM_COMPS	8		Bitmask of components to include in the matrix.
28	SM_INCLUDE_MASK_INDEX	8	0-7	Index of the include mask (index to EFM_TABLE)
29	RW_MASKING	8		Reaction wheel masking configuration. See Sect. 16.4.6. Set to 0 to disable RW masking.
30	EXTRA_SETTINGS	8		A bitmask of additional settings. See below.
31	SM_CAL_INDEX	8		Low 4 bits: Index of SM calibration table. SW2.0 values are:
				- 0 for Dipole_LP 49 kHz config
				- 1 for Monopole 49 kHz
				- 2 for Dipole_LP 24 kHz
				- 3 for Monopole 24 kHz
				High 4 bits: Index of SM transform matrix. Used
				in BP1 Poynting and BP2 trace calculations. SW2.0 values are:
				- 0 for Dipole_LP config (AD5,6,7)
				- 1 for Monopole (AD5,6,7)
				- 2 for Dipole_uber
				-3 for Identity matrix
32	JMAG_MIN_SAMPLES	8		Minimum number of samples to consider JMAG data valid for BP1/2
33	BP2_CONFIG	8		Bitmask of BP2 settings:
				bits6-7: transformation matrix index. Used for

- 27/61

				Poynting vector projections in BP2:
				0 = Dipole P. 1 = Monopole. 2 = Dipole uber.
				3= Identity matrix for AD567
				bit5: Force fixed JMAG value ([0,0,1])
				bits0-4: Antennas used in BP2 E trace averaging
34	BP2_SZ_TRESHOLD	8		Threshold of BP2 normalized Poynting flux
35	STAT_BLOCKS_PER_PACK	8	1-64	Number of statistical blocks per STAT packet
36	TRIG_THR_RATIO_DUST	16		Peak-med ratio threshold for dust
38	TRIG_THR_ZX_DUST	16		Zero cross threshold for dust
40	TRIG_THR_RATIO_WAVE	16		Peak-med ratio threshold for waves
42	TRIG_THR_ZX_WAVE	16		Zero cross threshold for waves
44	TRIG_THR_MIN_AMP	16		Minimum peak amplitude to consider for trigger
46	TRIG_THRESH_PAR_A	16		Extra parameter A for detection. Maximum RMS value for ALT_RMS.
48	TRIG_THRESH_PAR_B	16		Extra parameter B for detection
50	TRIG_THRESH_PAR_C	16		Extra parameter C for detection
52	TRIG_THRESH_PAR_D	16		Extra parameter D for detection
54	TRIX_ZX_OFFSET	16		A signed offset value used for zero crossings
56	trig_quality	8		Quality param – what parameter to use for
				quality factor. One of:
				$LF_QUAL_RMS_AMP = 0,$ $LF_QUAL_PEAK_AMP = 1,$ $LF_QUAL_RATIO = 2,$ $LF_QUAL_ZEROX = 3,$ $LF_QUAL_WAVES_PEAK = 4,$ $LF_QUAL_WAVES_RMS = 5,$ $LF_QUAL_DUST_PEAK = 6,$ $LF_QUAL_DUST_RATIO = 7,$ $LF_QUAL_RMS_ALT_CH = 8,$ See triggering section for description.
	BP2 triggering config			
57	trig_bp2_bitmask	8		A bitmask of parameters to use for BP2 trigger
58	trig_alt_channel_mask	8		Bitmask of channels to include in the Alt RMS value (usually 3 magnetic components).
59	trig_snap_limit	8		Maximum number of triggered snapshots to send over dump cycle (for immediate trigger)
60	trig_bp2_index_low	16		The lowest bin to be included in Q calculation
62	trig_bp2_index_high	16		The highest bin to be included in Q calculation
64	trig_bp2_b_low	float32		low limit for BP2 B trace
68	trig_bp2_b_high	float32		high limit for BP2 B trace
72	trig_bp2_e_low	float32		low limit for BP2 E trace
76	trig_bp2_e_high	float32		high limit for BP2 E trace
80	trig_bp2_ellipticity_low	float32		low limit for BP2 ellipticity
84	trig_bp2_ellipticity_high	float32		high limit for BP2 ellipticity

	r		
88	trig_bp2_planarity_low	float32	low limit for BP2 planarity
92	trig_bp2_planarity_high	float32	high limit for BP2 planarity
96	trig_bp2_theta_low	float32	low limit for BP2 ellipticity
100	trig_bp2_theta_high	float32	high limit for BP2 ellipticity
104	trig_bp2_phi_low	float32	low limit for BP2 planarity
108	trig_bp2_phi_high	float32	high limit for BP2 planarity
112	trig_bp2_sz_low	float32	low limit for BP2 Sz (normalized Poynting)
116	trig_bp2_sz_high	float32	high limit for BP2 Sz (normalized Poynting)
120	su_comp_algo	8	RPWI compression algorithm (0 = algoNULL, 2 =
			algoUD, 3 = algoLPC)
121	su_lpc_algo	8	Number of coefficients for LPC compression.

Total size = 120 bytes.

Description of individual fields follows:

DATA_PRODUCTS: Specified which data products are to be collected and transmitted.					
Bit	Function/content	Allowed values			
0 (LSB)	DWF - Enable decimated WF data				
1	SMX - Enable spectral matrices				
2	RSWF – Periodic Waveform snapshots enabled	Only one bit of 2-3 can be set			
3	TSWF – Triggered waveform snapshots	Only one bit of 2-3 can be set			
4	BPO – Enable simple basic parameters	Only one bit of 4,5,7 can be set			
5	BP1 – Enable extended basic parameters	Only one bit of 4,5,7 can be set			
6	DWFS – decimated waveform snapshot				
7	BP2 – Special highly compressed spectral parameters	Only one bit of 4,5,7 can be set			
8	STAT – Statistical data packet				
9-14	Spares	0			
15	If set, sampling of 24.4 kHz is used instead of 48.8	0			
	(this affects SMX and WFS data, not DWF).				

EXTRA_SET	EXTRA_SETTINGS: A bitmask of additional LF processing settings			
Bit	Function/content			
0 (LSB)	SCM_CALIB - if set, a SCM calibration sequence is emitted at the start of the operation.			
1-2	SCM_AMP – A 2-bit value indicating amplitude of calibration			
3	CFG_EXTRAS_BP1_EDIAG_TRANS: Transform the electric field data before calculating E-			
	field trace in BP1 data.			
4	CFG_EXTRAS_DWFS_NO_SEQ: if set, DWFS is generated autonomously, ignoring triggers.			
5	CFG_EXTRAS_WFS_EX_LONG: enables a special WFS mode is enabled, where WFS			
	snapshots longer than 32k are allowed and they are broken into 32k sample blocks when			
	transmitting.			
6	CFG_EXTRAS_JMAG_BP1_HDR - JMAG data are put in BP1 header			
7	CFG_EXTRAS_JMAG_BP1_IBS - IBS JMAG data are used instead of OBS			

TRIG_ALGO: Configuration of LF snapshot triggering				
Bit	Function/content	Allowed		
		values		
0 (LSB)-1	ALGO_CODE: Enum specifying the triggering algorithm:	0-2		

- 29/61

0 - LF_ALGO_EXTERNAL: External trigger (use LP trigger) 1 - LF_ALGO_DUST_WAVE: Trigger from WFS, detect dust 2 - LF_ALGO_BP2: Trigger from BP2 2-4 Spare 0 5 TRIG_ALGO_LIMIT - if set, limit the number of triggered snapshots to be sent to TRIG_DUMP_CYCLE. Only useful when TRIG_ALGO_IMMEDIATE is set. 6
1 - LF_ ALGO_DUST_WAVE: Trigger from WFS, detect dust 2 - LF_ ALGO_BP2: Trigger from BP2 2-4 Spare 0 5 TRIG_ALGO_LIMIT - if set, limit the number of triggered snapshots to be sent to TRIG_DUMP_CYCLE. Only useful when TRIG_ALGO_IMMEDIATE is set. 6
2 - LF_ ALGO_BP2: Trigger from BP2 0 2-4 Spare 0 5 TRIG_ALGO_LIMIT - if set, limit the number of triggered snapshots to be sent to TRIG_DUMP_CYCLE. Only useful when TRIG_ALGO_IMMEDIATE is set. 0 6 TRIG ALGO IMMEDIATE - If set, do not store a snapshot in temp buffer, but
2-4 Spare 0 5 TRIG_ALGO_LIMIT - if set, limit the number of triggered snapshots to be sent to TRIG_DUMP_CYCLE. Only useful when TRIG_ALGO_IMMEDIATE is set. 0 6 TRIG ALGO IMMEDIATE - If set, do not store a snapshot in temp buffer, but
 5 TRIG_ALGO_LIMIT - if set, limit the number of triggered snapshots to be sent to TRIG_DUMP_CYCLE. Only useful when TRIG_ALGO_IMMEDIATE is set. 6 TRIG_ALGO_IMMEDIATE - If set, do not store a snapshot in temp buffer, but
to TRIG_DUMP_CYCLE. Only useful when TRIG_ALGO_IMMEDIATE is set.6TRIG_ALGO_IMMEDIATE - If set, do not store a snapshot in temp buffer, but
6 TRIG ALGO IMMEDIATE – If set, do not store a snapshot in temp buffer, but
dump any snapshot fulfilling trigger condition
7 TRIG_ALGO_CONCLUDE - If set, wait for conclude trigger event instead of
autonomous periodic trigger dump (relevant for ALGO_CODE = LF_
ALGO_DUST_WAVE and LF_ ALGO_BP2)

14.2 Spectral bin tables (SB_TABLE)

The spectral bin tables specify the edges of frequency bins for averaging of spectral products. These shall be stored in DPU MRAM (changeable by TC) and referred to by an index (SB_INDEX) from the main configuration structure. When LF board is configured, the table corresponding the specified index shall be uploaded in the LF board using a sequence of write commands.

Each table is 516 bytes long. The DPU shall be able to store up to 16 such tables, each with the following structure:

ID	Bit size	Range	Description
SB_INDEX	16	0-63	
SB_NUM_BINS	16	4-128	
SB_BIN_EDGES	256*16 bits		

Total size: 516 bytes.

14.3 Include frequency mask table (EFM table)

The spectral bin tables shall be stored in DPU MRAM (changeable by TC) and referred to by an index (EFM_INDEX) from the main configuration structure. Each table is 132 bytes long. The DPU shall be able to store up to 8 such tables, each with the following structure:

ID	Bit size	Range	Description
EFM_INDEX	16	0-63	
Spare	16	0	
EFM_MASK	64*16 bits		This field has 1024 bits, each bit indicates whether a corresponding FFT bin should be masked.

Total size: 132 bytes.

15 LF TM packets (SW interface to OBC)

The following LF science TM data products can be generated.

PACKET ID	Packet data	SID
TM_LF_RAW	Raw LF frames	0
TM_LF_RSWF	Waveform snapshot (periodic)	33
TM_LF_TSWF	Waveform snapshot (triggered)	34
TM_LF_DWF	Decimated waveform	3
TM_LF_SM	Spectral matrix	4
TM_LF_BP0	Simple spectral basic parameters	5
TM_LF_BP1	Extended spectral basic parameters	6
TM_LF_DWFS	Decimated waveform snapshot	39
TM_LF_BP2	Extra reduced basic parameters	8
TM_LF_STAT	Trigger statistical packet, incl. dust	9

15.1 TM_LF_RAW

This data product is transmitted in RAW mode and is basically a raw LF hardware frame with RPWI header. Designed for debug/calibration.

Offset (byte)	ID	Size in bytes	Range /type	Description	
RPWI co	ommon header (6 bytes)				
0	SID	1	0	SID = 0: TM_LF_RAW	
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time	
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2^-64 sec)	
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)	
7	Aux Length	1	0		
Aux header (length = 8 bytes)					
8	LF frame	2072	data	Raw LF frame, including header, exactly as received from LF.	

15.2 TM_LF_RSWF

Periodically collected waveform snapshots sampled at 48.8 ksps or 24.4 ksps, divided into multiple packets. Aux header only in the first packet.

Offset (byte)	ID	Size in bytes	Range /type	Description
RPWI co	ommon header (6 bytes)			
0	SID	1	33	SID = 33: TM_LF_RSWF
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2^-64 sec)
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)
7	Aux Length	1	0	
Aux hea	ader (length = 8 bytes)			
8	SWITCHES1	4	Bitmask	HW switches1
12	SWITCHES3	1	Bitmask	HW switches2
13	COMPONENT_MASK	1	Bitmask	A bitmask of components in the packet. num_comp = number of nonzero bits in COMPONENT_MASK
14	TOTAL_PACKETS	2	Unsigned <= 3072	Number of packets forming one snapshot.
Start of	data (length = 4 + 2*128*num_com	p. Maximum leng	th 2052 byte	es)
16	ARTEFACTS	1	Bitmask	ADC overflow bits.
17	SNAPSHOT_NUMBER	1	Bitmask	Sequential counter incremented with each snapshot.
18	SEQ_COUNTER	2	Unsigned	Packet number within one snapshot.
20	DATA	2*num_comp *128	Signed int16	Waveform data encoded as 16b integers. 128 samples per channel, from num_comp channels.

- 32/61 -

15.3 TM_LF_TSWF

Triggered waveform snapshot sampled at 48.8 ksps or 24.4 ksps, divided into multiple packets. Aux header only in the first packet.

Offset (byte)	ID	Size in bytes	Range /type	Description		
RPWI common header (6 bytes)						
0	SID	1	34	SID = 34: TM_LF_TSWF		
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time		
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2^-64 sec)		
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)		
7	Aux Length	1	<u>12</u> 0	<u>Aux_len = 12</u>		
Aux hea	ader (length = 12 bytes) – only i	n first packet				
8	SWITCHES1	4	Bitmask	HW switches1		
12	SWITCHES2	1	Bitmask	HW switches2		
13	COMPONENT_MASK	1	Bitmask	A bitmask of components in the packet. num_comp = number of nonzero bits in COMPONENT_MASK		
14	TOTAL_PACKETS	2	Uint4 + Uint12Unsi gned <= 3072	Low 12 bits: Number of packets forming one segment (< 3072) High 4 bits: Number of segments the packet is divided into		
16	TRIGGER_INFO	2		Trigger algorithm information. See below.		
18	QUALITY	2		Quality factor		
Data (th	e following block is repeated):				
20	ARTEFACTS	1	Bitmask	ADC overflow bits.		
21	SNAPSHOT_NUMBER	1	Bitmask	Sequential counter incremented with each snapshot.		
22	SEQ_COUNTER	2	Unsigned	Packet number within one snapshot.		
24	DATA	2*num_com p *128	Signed int16	Waveform data encoded as 16b integers. 128 samples per channel, from num_comp channels.		

TRIGGER_INFO 16bit word contains the following:

Bits ID)	Description

- 33/61 -

0-2	TRIG_ALGO_CODE	Configured triggering algorithm:		
		0 - LF_ALGO_EXTERNAL: External trigger (use LP trigger)		
		1 - LF_ ALGO_DUST_WAVE: Trigger from WFS, detect dust		
		2 - LF_ ALGO_BP2: Trigger from BP2		
3-5	trig_channel	LF channel used for triggering (for LF_ ALGO_DUST_WAVE)		
6-9	quality_param	Quality parameter used. Same as trig_quality in config.		
10-12	SELECTION_REASON	Reason for snapshot dump. One of:		
		LF_TRIG_SEL_IMMEDIATE = 1 - snapshot dumped immediately,		
		LF_TRIG_SEL_BEST_CONCLUDE = 2 - best stored snapshot dumped on conclude		
		trigger event,		
		LF_TRIG_SEL_ON_CONCLUDE = 3 -snapshot taken on conclude trigger (buffer		
		was empty), LF_TRIG_SEL_BEST_TIMER = 4 - best stored snapshot dumped on		
		periodic timer.		
13-15	SIGNAL_TYPE	Type of detected signal. Only non-zero for LF_ALGO_DUST_WAVE:		
		0 = unknown, 1 = wave, 2 = dust, 3 = other		

15.4 TM_LF_DWF

Continuous waveform sampled at 763 Hz or optionally decimated down to 763/2^N Hz.

Offset (byte)	ID	Size in bytes	Range	Description			
RPWI co	RPWI common header						
0	SID	1	3	SID = 3: TM_LF_DWF			
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time			
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2 ⁻ 64 sec)			
4	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)			
7	Aux Length	1	0	Aux len = 0			
Packet I	neader (length = 8 bytes)	·					
8	SWITCHES1	4	Bitmask	HW switches1			
12	SWITCHES2	1	Bitmask	HW switches2			
13	ARTEFACTS	1	Bitmask	ADC overflow bits.			
14	COMPONENT_MASK	1	Bitmask	A bitmask of components in the packet.			
				num_comp = number of nonzero bits in COMPONENT_MASK			
15	DECIMATION	1	0-5	Decimation factor.			
Start of	data (length = 2*128*num_con	np. Maximum leng	gth 2048 byte	s)			
16	DATA	16*num_comp *128	Signed int16	Waveform data encoded as 16b integers. 128 samples per channel, from num_comp channels.			

15.5 TM_LF_SM

On-board calculated full spectral matrix (8 x 8 or reduced to smaller dimensions).

Offset (byte)	ID	Size in bytes	Range /type	Description
RPWI co	ommon header			
0	SID	1	4	SID = 4: TM_LF_SM
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2 ⁻ 64 sec)
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)
7	Aux Length	1	12	Aux len = 12
Aux hea	ader (length = 12 bytes)			
8	SWITCHES1	4	Bitmask	HW switches1
12	SWITCHES2	1	Bitmask	HW switches2
13	Spare	1	0	Spare = 0
14	SB_INDEX + EFM_INDEX	1	5 + 3 bits	5 bits SB_INDEX MSbits
				3 bits EFM_INDEX LSbits
15	NUM_FREQ	1	1-128	Number of frequency bins.
16	NUM_AVG_SPEC	2		Low 14 bits (0-13): Number of averaged spectra in SM.
				Bit 14: If set, indicates a dynamic RW mask is used
				Bit 15: If set, indicates new RW mask was applied.
18	COMPONENT_MASK	1	Bitmask	Bitmask of components included in matrix. num_comp = number of nonzero bits in COMPONENT_MASK
19	BLOCK_SIZE	1	2	= num_comp*(num_comp+1)
				Size of data ´block corresponding to one frequency bin in bytes.
Start of	data (NUM_FREQ *block siz	ze. Maximum 92	216 bytes. Ca	n be split in smaller packets.)
20	ARTEFACTS	2	Bitmask	ADC overflow bits
22	Spare	2	0	Spare = 0
24	RW_FREQS	8	8 x 0-255	8 masked reaction wheel frequency bins.
32	SM_DATA	NUM_FREQ* BLOCK_SIZE		A sequence of NUM_FREQ matrices, each BLOCK_SIZE bytes large. Structure of the SM block defined below.

Spectral matrix data block per frequency bin (BLOCK_SIZE bytes each)

Offset (byte)	ID	Size (bytes)	Description
0	AUTO_SPECTRA	Num_comp*2	Power spectrum encoded as 10(MSbits - mantisa)+6 (LSbits –

			exponent) float.
2*num_com	CROSS_SPECTRA	num_comp*(num_comp-1)	Off-diagonal SM elements encoded as
р			8+8 bit complex numbers.

15.6 TM_LF_BP0

Simple spectral product for selective downlink. Only contains E and B power spectra calculated in software from spectral matrices. Not split in multiple packets.

Offset (byte)	ID	Size in bytes	Range /type	Description
RPWI c	ommon header		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0	SID	1	5	SID = 5: TM_LF_BP0
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2 ⁻ 64 sec)
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)
7	Aux Length	1	0	0
Packet	header (length = 12 bytes)			
8	SWITCHES1	4	Bitmask	HW switches1
12	SWITCHES2	1	Bitmask	HW switches2
13	ARTEFACTS	1	Bitmask	ADC overflow bits
14	AVG_TIME_FREQLOG2	1	4 + 4 bits	4 bits spectral averaging
			unsigned	4 bits time averaging
15	SB_INDEX + EFM_INDEX	1	5 + 3 bits	5 bits SB_INDEX MSbits
				3 bits EFM_INDE LSbits
16	NUM_AVG_SPEC	2	0-4095	Low 14 bits (0-13): Number of averaged spectra in SM.
				Bit 14: If set, indicates a dynamic mask is used
				Bit 15: If set, indicates new mask was applied.
18	NUM_FREQ	1	1-128	Number of frequency bins.
19	MASK_EB	1	Bitmask	Bitmask of E and B to include in averaging.
20	RW_FREQS	8	8 x 0-255	8 masked reaction wheel frequency bins.
Start of	data (length = 4*NUM_FREQ	bytes, maxir	num 512 byte	s)
28	DATA	2*2*NUM _FREQ	10+6 floats	2 spectra of NUM_FREQ bins. Spectral power encoded in 16bits (10-bit mantissa + 6-bit exponent).

	Ref: JUI-IAP-RPWI-LF-DIF
JUICE RPWI LF digital interface	Issue: 01 Revision: 1 <u>5</u> 4 Date: 04/10/2023
	- 36/61 -

- 37/61 -

15.7 TM_LF_BP1

Extended spectral product, to be used as quicklook for selective downlink, but also for science. Not split in multiple packets.

Offset (byte)	ID	Size in bytes	Range /type	Description
RPWI co	mmon header			
0	SID	1	= 6	SID = 6: TM_LF_BP1
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2^-64 sec)
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)
7	Aux Length	1	= 0	
Packet h	eader (length = 12 bytes)			
8	SWITCHES1	4	Bitmask	HW switches1
12	SWITCHES2	1	Bitmask	HW switches2
13	ARTEFACTS	1	Bitmask	ADC overflow bits
14	AVG_TIME_FREQLOG2	1	4 + 4 bits	4 bits spectral averaging
			unsigned	4 bits time averaging
15	SB_INDEX + EFM_INDEX	1	5 + 3 bits	5 bits SB_INDEX MSbits
				3 bits EFM_INDEX LSbits
16	NUM_AVG_SPEC	2		Low 14 bits (0-13): Number of averaged spectra in SM.
				Bit 14 : If set, indicates a dynamic mask is used
				Bit 15: If set, indicates new mask was applied.
18	NUM_FREQ	1	1-128	Number of frequency bins.
19	MASK_EB	1	Bitmask	Bitmask of B and E to include in averaging. Note: For BP1, Must be selected 3 electric and 3 magnetic.
20	RW_FREQS	8	8 x 0-255	8 masked reaction wheel frequency bins.
28	JMAG_MANTIS	3	Signed U8	Averaged JMAG vector (3 x mantis).
				0xFF if JMAG data is off / not available.
				OxFE signals an error.
				Invalid value also signaled by JMAG_MANTIS = (0,0,0) and JMAG_EXP = 0x1f
31	JMAG_EXP	1		Bits 0:4 : Averaged JMAG vector exponent. This is a signed value between (-15 and 15)
				Bit 5: If set, JMAG/LF times are not synced

				Bit 6: If set, IBS sensor is used by JMAG Bit 7: 0 – spare		
Start of data (length = 16*NUM_FREQ bytes, maximum 2048 bytes)						
32	DATA	16*NUM_	See below	A sequence of 16-byte data blocks described		
		FREQ		below (one per frequency bin).		

Data block per frequency bin (16 bytes per block)

Offset (bits)	ID	Bit size	Description
0	BP1_EL_DIAG	3*8	Diagonal E-field elements (mantissas, 3 x uint8)
24	BP1_MAG_DIAG	3*8	Diagonal B-field elements (mantissas, 3 x uint8)
48	BP1_POYNITNG	3*8	Normalized Poynting vector (3 x int8)
72	BP1_MAG_EXP	6	Common B-field exponent
78	BP1_EL_EXP	6	Common E-field exponent
84	BP1_PV_EXP	2	Additional exponent bits for Poynting vector. 0x3 means overflow
86	BP1_MAG_OFF_DIAG	6*7	6 element array of 7-bit numbers, containing normalized off-diagonal elements of magnetic 3x3 spectral matrix.

- 39/61

15.8 TM_LF_DWFS

A waveform snapshot created from the DWF product, divided into multiple packets. Aux header only in the first packet.

Offset (byte)	ID	Size in bytes	Range /type	Description
RPWI cor	nmon header			·
0	SID	1	39	SID = 39: TM_LF_DWFS
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2^-64 sec)
5	SEQ_CNT	1	0 - 0xFFFF	Sequential counter (per SID)
7	Aux Length	1	<u>8</u> 0	<u>Aux_len = 8</u>
Aux head	er (length = 8 bytes)			
8	SWITCHES1	4	Bitmask	HW switches1
12	SWITCHES2	1	Bitmask	HW switches2
13	COMPONENT_MASK	1	Bitmask	A bitmask of components in the packet. num_comp = number of nonzero bits in COMPONENT_MASK
14	TOTAL_PACKETS	2	Unsigned $\zeta = 3072$	Number of packets forming one snapshot.
Start of d	ata (length = 4 + 2*128*num_co	nn. Maximum l	ength 2052 h	ovtes)
16		1	Ritmask	ADC overflow bits
17	SNAPSHOT_NUMBER	1	Bitmask	Sequential counter incremented with each snapshot.
18	SEQ_COUNTER	2	Unsigned	Packet number within one snapshot.
20	DATA	2*num_com p*128	Signed int16	Waveform data encoded as 16b integers. 128 samples per channel, from num_comp channels.

15.9 TM_LF_BP2

Another simple spectral product for selective downlink. This contains very reduced power spectra and wave polarization parameters. Not split in multiple packets.

Offset	ID	Size in	Range	Description
(byte)		bytes	/type	
RPWI c	ommon header	1		
0	SID	1	8	SID = 8: TM_LF_BP2
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2 ⁻ 64 sec)
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)
7	Aux Length	1	0	0
Packet	header (length = 12 bytes)			
8	SWITCHES1	4	Bitmask	HW switches1
12	SWITCHES2	1	Bitmask	HW switches2
13	ARTEFACTS	1	Bitmask	ADC overflow bits
14	AVG_TIME_FREQLOG2	1	4 + 4 bits	4 bits spectral averaging
			unsigned	4 bits time averaging
15	SB_INDEX + EFM_INDEX	1	5 + 3 bits	5 bits SB_INDEX MSbits
				3 bits EFM_INDE LSbits
16	NUM_AVG_SPEC	2	0-4095	Low 14 bits (0-13): Number of averaged spectra in SM.
				Bit 14: If set, indicates a dynamic mask is used (not implemented, not needed)
				Bit 15: If set, indicates new mask was applied.
18	NUM_FREQ	1	1-128	Number of frequency bins.
19	MASK_EB	1	Bitmask	Bitmask of E and B to include in averaging.
20	RW_FREQS	8	8 x 0-255	8 masked reaction wheel frequency bins.
28	FLAGS	1	Bitmask	Various flags indicating data state
29	Spare	1	0	Spare = 0
Start of	data (length = 4*NUM_FREQ	bytes, maxir	num 512 bytes	5)
30	DATA	4*NUM_F REQ	Packed structure	An array 4-byte of data blocks described below.

Data block per frequency bin (4 bytes per block)

Offset	ID	Bit size	Description

(bits)			
0	B_TRACE	8	Trace of B matrix (encoded as 5+3 log2)
8	E_TRACE	8	Trace of E matrix (encoded as 5+3 log2)
16	THETA	4	Theta angle of K-vector in B-aligned coordinates (0 to 90, encoded to 4 bits)
20	PHI	4	PHI angle of K-vector in B-aligned coordinates (-180 to 180, encoded to 4 bits)
24	ELLIPTICITY	3	Signed ellipticity (-1 to 1) encoded in 3 bits (resolution 0.25)
27	PLANARITY	3	Planarity (0 1) encoded in 3 bits (resolution 0.125)
30	S_PAR	2	B-parallel component of Poynting vector, encoded in 2 bits (two positive and two negative values)

15.10 TM_LF_STAT

A very short TM packet containing triggering results, including dust and wave counters, peak/RMS amplitudes etc. Not split in multiple packets.

Offset (byte)	ID	Size in bytes	Range /type	Description		
RPWI co	RPWI common header					
0	SID	1	9	SID = 9: TM_LF_STAT		
1	Acquisition Coarse Delta Time	2		Difference in seconds between the packet coarse time and acquisition coarse time		
3	Acquisition Fine Time	2		Data acquisition fine time (in units of 2^-64 sec)		
5	SEQ_CNT	2	0 - 0xFFFF	Sequential counter (per SID)		
7	Aux Length	1	<u>16</u> 0	<u>Aux len = 16</u> θ		
AuxPac	ket header (length = 1 <u>6</u> 2	bytes)				
8	SWITCHES1	4	Bitmask	HW switches1		
12	SWITCHES2	1	Bitmask	HW switches2		
13	NUM_SNAP_ALL	1	0-255	Number of snapshots per block, including saturated, minus 1		
14	NUM_BLOCKS	1	1-64	Number of blocks in packet (up to 64)		
15	ALGO_CODE	1		Algorithm code		
16	ALGO_COMPONENT	1		Selected component used for trig/analysis		
17	ALT_BITMASK	1		Bitmask of Alt channels		
18	SNAP_PERIOD	2		Period of WFS snapshots (in 128sp blocks)		
20	SNAP_LENGTH	2		Length of snapshot (in 128 <u>-samplesp blocks)</u>		
22	Spare	2	0	Spare = 0		
Start of	data (M blocks, length =	NUM_BL	OCKS*20)			
Descrip	tion of one stat block belo	w, this is	repeated NU	M_BLOCK times		
0	NUM_WAVES	1		Number of waves detected		

1	NUM_DUST_POS	1	Number of positive dust spikes detected
2	NUM_DUST_NEG	1	Number of negative dust spikes detected
3	NUM_ALL_GOOD	1	Number of all snapshots, except saturated
4	WAVE_ZEROX_MED	2	Number of zero crossings (median)
6	WAVE_PEAK_AMP	2	Peak amplitude of identified waves
8	WAVE_RMS_AMP	2	RMS wave amplitude
10	DUST_MED_AMP	2	Median amplitude of dust
12	DUST_PEAK_AMP	2	Peak amplitude of dust (signed)
14	SNAP_PEAK_AMP	2	Peak snapshot amplitude
16	SNAP_RMS_AMP	2	RMS snapshot amplitude
18	WAVE_RMS_ALT	2	RMS amplitude of waves from Alt channels

15.11 Common header data

HW_SWITCHES_ARTEFACTS: A compressed bitmask containing complete information about LF hardware switches and data artefacts (overflows). Size of this bitmask is 6 bytes (48 bits).

Bit	ID	Description
Switches 1	(32 bit word)	
0	AD1 SCM X EN	SCM channel 1 enabled
1	AD2 SCM Y EN	SCM channel 2 enabled
2	AD3 SCM Z EN	
3	AD4 ESUMED EN	
4	AD1234 REF EN	
5	AD4 ESUMED MUX A	
6	AD4 ESUMED MUX B	
7	AD4 ESUMED MUX C	
8	E SUM GO	
9	E SUM G1	
10	E SUM E1 EN	
11	E SUM E2 EN	
12	E SUM E3 EN	
13	E SUM E4 EN	
14	Spare = 0	
15	SAMP_RATE	Waveform sampling rate: 0 if 48.8 ksps, 1 if 24.4 ksps.
16	ED INMX1P A	
17	ED INMX1P B	
18	ED INMX1N A	
19	ED INMX1N B	
20	ED INMX2P A	
21	ED INMX2P B	
22	ED INMX2N A	
23	ED INMX2N B	
24	ED INMX3P A	
25	ED INMX3P B	
26	ED INMX3N A	

- 43/61

27	ED INMX3N B	
28	ED INMXS ENN	
29	Spare = 0	
30	Spare = 0	
31	Spare = 0	
Switches2 (byte)	
O (LSB)	AD5 EDINMX1 EN	
1	AD6 EDINMX2 EN	
2	AD7 EDINMX3 EN	
3	AD8 ESUMED EN	
4	AD5678 REF EN	
5	AD8 ESUMED MX A	
6	AD8 ESUMED MX B	
7	AD8 ESUMED MX C	
Artefacts (b	oyte)	
8	ADC1_OR	ADC n.1 overrange detected
9	ADC2_OR	ADC n.2 overrange detected
10	ADC3_OR	ADC n.3 overrange detected
11	ADC4_OR	ADC n.4 overrange detected
12	ADC5_OR	ADC n.5 overrange detected
13	ADC6_OR	ADC n.6 overrange detected
14	ADC7_OR	ADC n.7 overrange detected
15	ADC8_OR	ADC n.8 overrange detected

RW_FREQS: 8-byte array where each byte indicates the FFT bin masked due to the reaction wheel signature. There are 4 RWs and for each RW we can mask the fundamental and the 8-th harmonic, hence up to 8 frequencies can be basked out (8 bytes are necessary).

The value of the byte N_rw is a frequency bin corresponding to the original 2048 point FFT (masked freq = $f_{samp} * N_{rw} / 2048$), where f_{samp} is LFR sampling frequency (either 48828 Hz or 24414 Hz).

There are two special values: 0xFF indicates no mask is used and 0xFE is an invalid value (generally indicating and error).

16 DPU-side software processing of LF data

This section describes the handling of the LF data in the DPU software and the LF software operation in the normal operational mode (LF_NOMINAL_SCI submode or the SCINECE mode). LF software also supports other modes (LF_RAW and LF_RFT_FFT), where the processing is effectively disabled, but these are only used for testing.

In this section and below, the variables in **bold-italic** refer to configuration parameters in the PCE configuration structure.

16.1 Basic operation and configuration of LF software

The operation of LF in SCIENCE mode (NOMINAL_SCI submode) is configured by the following data structures modifiable by telecommands.

Two structures which are a part of the LF configuration selected either by TC or by the sequencer

HD_Config structure: Structure directly configuring some LF FPGA registers (For the description of the registers, see Section 4). In normal SCIENCE mode, only a subset of the register values in this structure is used:

- 0 HW_SWITCH_CONFIG1..4 sets the hardware switches of LF board (registers 0x02 to 0x05)
- 0 PWR_CTRL configures register 0x0B (controls power of SCM and LF board and other hardware features).
- 0 NAS Number of spectral matrices to average in FPGA (register 0x0A).
- 0 If_submode should be set to LF_NOMINAL_SCI.

The rest of values is ignored and the registers are set with values calculated by the software from the settings in the PCE structure. For the description of the registers, see Section 4.

• **PCE_Config** structure: The main configuration structure, defining most of LF software behaviour and data generation. See Section 14.1 for description.

Multiple parameter tables needed for data processing:

- Spectral bin tables (SB_TABLE): These tables configure the output "reduced" frequency bins of the spectral products. Only one table is active at a time, selected by an index in the PCE_Config structure. See Section 14.2 for description.
- Include frequency mask table (EFM_TABLE): These tables configure the which frequency bins should be included in the averaging of the spectral products. Only one table is active at a time, selected by **SM_INCLUDE_MASK_INDEX** in PCE_Config.
- There are more tables **TBW**

16.2 High resolution waveform snapshots (TM_LF_RSWF and TM_LF_TSWF)

The TM_LF_RSWF (Regular Science Waveform Snapshot) data product returns multi-component waveform snapshots taken periodically in regular intervals specified by **WFS_PERIOD**. The TM_LF_TSWF product provides the same snapshots, but instead of being captured periodically, they are selected based on one of the triggering algorithms described below. The TM_LF_RSWF and TM_LF_TSWF products are mutually exclusive, only one can be enabled at a time.

Software will need to select a subset of the components specified by a bitmask **WFS_CHANNEL_MASK** in the configuration structure. Only the selected components will be put in the TM packet. The snapshot length (number of snapshots per channel) is specified in **WFS_LENGTH** in multiples of 128 points.

16.3 Decimated Waveform at 763/2^N sps (TM_LF_DWF and TM_LF_DWFS)

LF supports two decimated data products generated from the slow data sampled by the FPGA at 763 sps.

• **TM_LF_DWF** is a continuous time series than can be decimated from the original 763 Hz by a factor of 2^N configured by **DWF_DECIMATION** using an FIR filter. This is used to generate the 24 Hz continuous data. Any set of field components can be selected by **DWF_CHANNEL_MASK**. This product is always transmitted in individual data packets, each containing 128 samples.

 TM_LF_DSWF is a multi-component time series sampled always at 763 Hz and DWFS_CHANNEL_MASK configures the E/B components to be included. This product is generated in the form of "snapshots" similar in format to TM_LF_RSWF. The length of the DSWF snapshots in samples per component is set by the DWFS_LENGTH parameter (in multiples of 128). DSWF product. TM_LF_DWFS can be generated either periodically (similar to TM_LF_RSWF) or in response to a trigger.

To enable periodic DWFS generation, the bit CFG_EXTRAS_DWFS_NO_SEQ has to be set in the EXTRA_SETTINGS variable and the period (start to start) is set via DWFS_PERIOD in multiples of 128 samples per channel. This can be used to generate a continuous DSWF waveform (such as in the insitu burst mode) by setting **DWFS_PERIOD** equal to **DWFS_LENGTH** (*e.g.* to 0x20).

For description of how the triggered DWFS snapshots are generated, see Section 17.

Both TM_LF_DWF and TM_LF_DSWF can be generated at the same time and can be configured, enabled or disabled independently.

16.4 Spectral data products (TM_LF_SM, TM_LF_BP0-2)

The LF board FPGA provides to the DPU averages spectral matrices. These are further processed in the software. Several types of post processing will be applied to SM packets to produce different spectral products:

16.4.1 TM_LF_SM data product:

This product contains the full spectral matrices, further averaged in software and converted to a more efficient format.

- Can be produced in parallel with BP0, BP1 or BP2.
- Selection of components: Typically, not all 8x8 components are valid/useful and the software will reduce the matrix to a subset of e.g. 6x6 or 3x3. These components are selected by the *SM_COMPS* bitmask.
- Reduction of the 64 bits integers to a more compressed format. The diagonal elements of the matrix are compressed to a 16-bit float value and each pair of the non-diagonal elements (forming a complex number) are normalized to an integer complex number encoded in a 16-bit integer (2 x 8 bits).

16.4.2 TM_LF_BP0 data product:

This product contains integrated power spectra calculated from the SM, summed over several components

- BPO can be produced in parallel with TM_LF_SM but not with BP1/BP2. BPx products are mutually exclusive.
- The data product contains two averaged auto spectra (E and B):
- These are calculated as summed auto-spectra (diagonal elements of the SM). Summation is performed according to the bitmask specified in **BP_MASK_EB**.
- Spectra can be reduced by averaging in time and frequency according to **BP_AVG_TIME** and **BP_AVG_FREQ_LOG2**.

16.4.3 TM_LF_BP1 data product:

Calculation reduced version of spectral parameters (reduced spectral matrix + Poynting vector). Also includes in the header the magnetic field vector provided to RPWI by JMAG. The calculation is performed by

- Averaging of transformed spectral matrices in time and frequency (set via **BP_AVG_TIME** and **BP_AVG_FREQ_LOG2**).
 - Processing of averaged spectral matrices to obtain, for each frequency step:
 - three components of E-field spectrum encoded as 3 x 8 bits mantissa + a common 6-bit exponent
 - three components of B-field spectrum encoded as 3 x 8 bits mantissa + a common 6-bit exponent
 - Off-diagonal elements
 - Poynting vector : 3x8=24 bit,
 - \rightarrow Total set: 128 bit (16 byte) per frequency and time interval.

16.4.4 TM_LF_BP2 data product:

This product contains the wave polarization parameters (power, ellipticity, planarity and Poynting vector direction) in a highly compressed form. Again, this product can be generated in parallel with TM_LF_SM, but not with other BPx products. The calculation involves transforming the spectral matrices to field aligned coordinates using JMAG data, averaging, applying on-board calibration and afterwards calculating the spectral parameters.

Details of the spectral calculation are given in an appendix (Section 18).

16.4.5 Configuration of spectral bins and include masks

As described in Section 13, the LF FPGA calculates the spectrum with 2048 FFT, yielding 1024 "source" frequency bins, and afterwards accumulates the spectral matrices both in time and frequency. All spectral data use a common "frequency" axis (specifying the output frequency bins after frequency reduction) and include mask (which allows to include/exclude individual bins of the source 1024 point spectrum – masked out bins, those set to 0 in the mask, are excluded from averaging/summing).

In the PC configuration, the index *SM_BINEDGES_TABLE_INDEX* gives and index to the active SB_TABLE (a table containing multiple sets of frequency bins – see 14.2) and *SM_INCLUDE_MASK_INDEX* is an index to the active EFM_TABLE, where the include masks are specified as 1024bit bitmasks.

The number of output frequency bins for the TM_LF_SM data product must be configured in *SM_NUM_FREQ_BINS*.

For BPO/BP1/BP2 products, the same frequency axis is used, but may be further reduced in frequency by summing adjacent frequency bins together. This frequency reduction is configured by

BP_AVG_FREQ_LOG2. The software sums together 2^**BP_AVG_FREQ_LOG2** adjacent bins, so for BP_AVG_FREQ_LOG2 = 0, the BPx frequency axis is the same as SM axis, for BP_AVG_FREQ_LOG2 = 1, the number of frequency bins in BPx products is reduced to one half, comparing to SM.

16.4.6 Handing of reaction wheel data

LF software receives reaction wheel information from the OBC and dynamically updates the include mask in the FPGA to mask out the RW frequencies. There are 4 reaction wheels and the software allows to mask out the frequency f and its 8th harmonic 8*f. The frequencies to mask are configured by the **RW_MASKING**

parameter in PCE configuration (bit 0 = fundamental of wheel 1, bit 1 - 8th harmonic of wheel 1, bit 2 - fundamental of wheel 2,).

Once the LF SW receives a new value for the RW frequencies, it calculates the frequencies to mask and applies a new mask on the start of the next LF_SM data product. This new mask is constructed from the static mask specified by *SM_INCLUDE_MASK_INDEX* with additional frequencies masked due to RW. The fact that a new mask has been applied is indicated in the TM_LF_SM/TM_LF_BPx packet headers by bit 15 in NUM_AVG_SPEC. The packet headers also reflect the masked frequencies in the 8-byte field RW_FREQS.

16.5 Interaction with RPWI software sequencer

The LF hardware does not require real time control from the sequencer and runs autonomously. In usual operation modes, the sequencer / software initializes the LF to a given configuration and LF operates in this mode autonomously, independently of the sequencer cycle. However, the LF software handles the following sequencer events on software level:

RPWI_EV_INTERFERENCE_START and RPWI_EV_INTERFERENCE_STOP: These two events signal to the LF software that E-field data is most likely affected by LP or MIME sweeps and do not contain a valid natural signal. LF software reacts in the following manner:

- 1) It pauses averaging of spectral matrices and BPx data products. During this interval, no new datapoints are included in the spectral averaging.
- 2) LF internal triggering in (in LF_ALGO_DUST_WAVE and LF_ ALGO_BP2 modes) is paused, so the SW will not trigger inside this interval.

RPWI_EV_TRIGGER: This event is used only in triggering mode based on LP detection

(LF_ALGO_EXTERNAL). In this mode, LF software triggers a snapshot on reception of the event.

RPWI_EV_CONCLUDE_TRIGGER: Used always in LF_ALGO_EXTERNAL mode and in in

LF_ALGO_DUST_WAVE and LF_ALGO_BP2 modes when **TRIG_ALGO_CONCLUDE** bit is set in configuration. In this configuration, the SW dumps the content of the temporary buffer only when this event is received, not autonomously.

RPWI_EV_INIT: LF software performs static initialization

RPWI_EV_CONFIG: LF applies a given configuration and starts LF science operation

RPWI_EV_STOP and RPWI_EV_ABORT_R: When either of those events is received, RPWI SW resets the LF board.

17 Triggering, dust detection and statistics (TM_LF_STAT)

The LF software allows multiple modes of triggering of its triggered snapshots (TM_LF_TSWF and TM_LF_DWFS). The global modes of LF trigger operation is specified by TRIG_ALGO variable in the PCE structure. The ALGO_CODE can be set to one of the following:

- LF_ALGO_EXTERNAL: LF uses external trigger from the LP board, controlled by the sequencer. This is the same operation as was implemented in Release 1.
- LF_ALGO_DUST_WAVE: LF internal triggering, when LF triggers autonomously based on the 49 ksps data it collects. It attempts to detect waves and dust impacts in the data via a set of criteria. In this regime (and only in this regime), the TM_LF_STAT product is generated.
- LF_ALGO_BP2: Triggers the waveform snapshots based on spectral data, calculated by LF.

17.1 Basic triggering using LP detection (LF_ALGO_EXTERNAL)

In this mode, LF triggers using the EV_TRIGGER and EV_CONCLUDE_TRIGGER events received from the sequencer, based on LP data. This mode only works with the sequencer, if run without a sequencer, no triggered snapshots are transmitted.

The basic operation is as follows:

- Whenever LF receives the EV_TRIGGER from LP, it commands the FPGA to capture TSFW snapshot (if TSWF enabled) and stores the snapshot in its internal buffer.

- A DWFS snapshot is captured as well (if DWFS product is enabled and the *CFG_EXTRAS_DWFS_NO_SEQ* bit is not set), centered on the time of EV_TRIGGER and stored in a separate temporary buffer.

- If a new trigger EV_TRIGGER arrives, the buffers are overwritten.

- When EV_CONCLUDE_TRIGGER is received the content of the temporary buffers is transmitted in the form of TM_LF_TSWF and TM_LF_DWFS products and the buffers are emptied. If the buffers are empty, the snapshots are taken at the time of EV_CONCLUDE_TRIGGER and transmitted immediately.

17.2 Autonomous triggering with dust detection (LF_ALGO_DUST_WAVE)

The triggering is performed by analyzing waveform snapshots taken periodically by LF.

- The source snapshot length and cadence is configured in PCE structure via **wfs_length** and **wfs_period** parameters.
- Triggering is performed on one component which is selected by *trig_channel* variable in PCE structure.

Below is described the algorithm (Note: the **bold-italic** variables in this section correspond to configuration parameters from the PCE structure):

Inputs: snapshot E(t), N = wfs_length*128 samples, triggering done based on a selected component

- 1) For each snapshot we compute:
- MAX = max(abs(E))
- MED = median(abs(E))
- ZX = number of zero crossings of (E *trig_zx_offset* offset). Proportional to frequency for narrowband waves.
- RMS_E = RMS value of E
- RMS B = RMS value of B (summed over alt channel bitmask specified by bits in trig_alt_channel_mask)

2) Snapshot is classified as either wave or dust

if ((MAX/MED > *trig_thr_ratio_dust*) & (ZX < Thresh3) & (RMS_B < Param_A)) => the snapshot is dust else if ((MAX/MED < Thresh2) & (ZX > Thresh4) & (RMS_B > Param_B)) => the snapshot is a wave

3) Quality factor calculation:

A quality factor **Q** is calculated from the snapshot. A method is chosen by the *trig_quality* variable and can be one of:

- RMS_AMP largest rms amplitude signal stored
- PEAK_AMP largest peak amplitude signal stored
- RATIO largest MAX/MED ratio
- ZEROX -- number of zero crossings
- DUST_PEAK peak amplitude with preference to dust (+ 32k if dust)
- DUST_RATIO RATIO with preference to dust (+ 32k if dust)
- WAVE_PEAK peak amplitude with preference to waves (+ 32k if waves)
- WAVE_RMS -
- RMS_ALR_CH RMS value from alternate channels (summed).

4) Triggered snapshot selection

The algorithm keeps the highest quality snapshot in an internal buffer (unless immediate triggering is configured), until a higher quality snapshot is found. If the current snapshot has a higher **Q** than the stored one, the stored one is replaced by the new one. The triggered snapshot is transmitted as TM_LF_TSWF and the internal buffer is cleared using one of the approaches defined in section 17.4.

DFWS triggering: In this triggering mode the DWFS snapshot can either be triggered at the same time as the TSWF (the DWFS trigger following the TSWF trigger) or the DWFS triggering can follow the basic mechanism described in 17.1, when DWFS is triggered by the EV_TRIGGER event from sequencer.

5) Statistic (TM_LF_STAT) calculation.

The results of the processing of all the waveform snapshots processed by the algorithm are used to collect statistics. The results are transmitted in the form of STAT blocks, with each block containing information collected over **TRIG_NUM_SNAP_STAT** processed waveform snapshots. This includes the number of positive and negative dust spikes identified, number of waves identified, maximum and average signal amplitude etc. (see the TM_LF_STAT packet description). To reduce packet overhead, multiple STAT blocks can be combined in a single TM_LF_STAT telemetry packet. The number of blocks in a packet is set by **STAT_BLOCKS_PER_PACK.**

17.3 Triggering based on BP2

In this regime, the trigger for the TSWF triggered snapshot is based on a quality factor calculated from the BP2 spectral product. This importantly requires that WFS and BP2 products are configured synchronously (WFS snapshot starts at the same time as BP2 spectral data collection). So, the WFS_PERIOD must match BP_AVG_TIME and NAS setting.

The following algorithm is then used to calculate the quality factor which is then used for triggering.

```
quality = 0;
for (idx = trig_bp2_index_low; idx < trig_bp2_index_high; idx++)
{
    bool BtraceOK = (Btrace >= trig_bp2_b_low) && (Btrace < trig_bp2_b_high)
    bool EtraceOK = (Etrace >= trig_bp2_e_low) && (Etrace < trig_bp2_e_high)
    bool ElipOK = .... and analogously for planarity, theta, phi, Sz.
    if (BtraceOK && EtraceOK && ElipOK && .....) {
        quality += Btrace
    }
}
if (quality > trig_bp2_q_threshold) {
    trigger the snapshot!
}
```

DFWS triggering: In this triggering mode the DWFS snapshot can either be triggered at the same time as the TSWF (the DWFS trigger following the TSWF trigger) or the DWFS triggering can follow the basic mechanism described in 17.1, when DWFS is triggered by the EV_TRIGGER event from sequencer.

17.4 Common additional triggering settings (handling of long snapshots, immediate trigger, dump cycling)

For all the triggering algorithms (LF_ ALGO_DUST_WAVE and LF_ ALGO_BP2), a common mechanism is used to determine when is the triggered snapshot sent out (and the internal buffer cleared in applicable). This general mechanism is described here together with some specifics.

In normal operation, the currently "best" triggered snapshot is kept in memory buffer and is sent to the spacecraft after the end of the current cycle (ether driven by sequencer or by internal LF cycle – see below). This is however only possible for snapshots up to than 96 ksamples per component, due to memory

limitation of RPWI. To allow LF to transmit longer snapshots, up to 256 ksamples a specific mechanism must be enabled as follows (This can be used with all LF_ALGO^{*} algorithms):

- CFG_EXTRAS_WFS_EX_LONG bit has to be set in the EXTRA_SETTINGS to allow for the snapshot length to exceed 32 ksamples (per channel). When this is set, the RSWF and TSWF snapshots are splits in blocks of 32 ksamples. This is also requires the snapshot length specified in WFS_LENGTH to be a multiple of 32 ksamples.
- If snapshots longer than 96 ksamples are required, the TRIG_ALGO_IMMEDIATE bit must be set as well. In this case, the triggered snapshots are not kept in the internal temporary buffer, but are immediately transmitted to the DPU. To avoid overloading telemetry in case of frequent triggers, the TRIG_ALGO_LIMIT bit should be set, limiting the number of triggered snapshots to be sent to one per TRIG_DUMP_CYCLE.

For internal triggering algorithms (LF_ALGO_DUST_WAVE and LF_ALGO_BP2), additional trigger behavior is determined by the setting of **TRIG_ALGO_CONCLUDE** bits in configuration:

- if **TRIG_ALGO_CONCLUDE** is set, the snapshot is dumped when EV_CONLCUDE_TRIGGER is received from the sequencer.
- if **TRIG_ALGO_CONCLUDE** is not set, the LF dumps the data autonomously after it processes **TRIG_DUMP_CYCLE** snapshots.

18 Appendix **1**: BP2 spectral parameter calculation description

This was taken from an internal specification, needs clarification.

18.1 **Configuration parameters:**

- **nBins** = number of frequency bins in spectral matrix.
- **indicesED** = indices of E antennas to use in Poynting calculation (there can be up to 5 antennas)
- bp_avg_time and bp_avg_freq_log2 are used the same way as for BP0 and BP1
- **indicesTrace** = indices of E antennas to use in calculation of the trace of Electric field (1,2 or 3 antennas can be selected)

Note: indices start at 1 in this section.

18.2 Calibration tables/matrices:

These are defined in LF_Tables.h/.c

1) **TM_scm_sc (lfTransMatB in code):** 3x3 real matrix, transforming from SCM coordinates to SC coordinates. For example

B_sc = **TM_scm_sc** * **B_scm** (B_scm is SCM magnetic field in original sensor coordinates)

2) **Ant_dir_sc (lfTransMatEAnt in code):** 3 x 5 real matrix, columns are unit directions of antennas corresponding to E1,E2,..., E5 in SC coordinates

3) **CalMat** (8 x 64 complex – **lfSmCalMatrices in code**), read from lfSmCalMatrices. Frequency dependent calibration of 8 components for a given mode at 64 frequency bins. Used to generate calibration matrices to convert the integer M_fpga matrix to physical units.

4) **TM_ant_sc (IfTransMatE in code)**: 3x3 matrix corresponding to a chosen indicesTrace. A matrix to convert a 3 component E-field vector from antenna coordinates to SC coordinates. Will include antenna lengths. The matrix is computed on ground and uploaded to SW. Software should have a set of 4 such matrices, selectable by a TC

5) **TM_mag_sc (IfTransMatJmag in code):** Transformation matrix from JMAG sensor coordiates to SC coordiates.

18.3 **Definitions:**

M_fpga (matrix 8 x 8 x nbins, 64bit integer) – matrix from FPGA, averaged in frequency in SW if configured. **EB(i,j,f)** [3 x 5 x nbins, complex float] – submatrix of ExB elemens of M_fpga, calibrated

BB(i,j,f) [3 x 3 x nBins, complex float] - submatrix of BxB elemens of M_fpga, calibrated

 TM_sc_mfa [3 x 3 x nBins, real float] – transformation matrix from SC to field aligned (MFA) coordinates, where

- axis mfa3 is along B_jmag

- axis mfa1 is orthogonal to 3, ad lies in a plane containing X axis of SC system.

- axis mfa2 is orthogonal to mfa1 and mfa3

TM_sc_mfa is calculated as (where x is Vector cross product):

T(3,:) = B_jmag / norm(B_jmag); T(2:,) = B_jmag x [1,0,0] / norm(B_jmag x [1,0,0]) T(1,:) = T(2,:) x T(3,:)

18.4 Initialization steps (to be done on EV_CONFIG, before first matrix calculation)

Step 1: CalMatInt = CalMat, interpolated to actual frequency bins (nbins). Can be done "virtually" in a function to save memory.

Step 2: Precalculate CM_BE: 3 x 5 x nBins complex calibration matrices for BE submatrix

CM_BE(i=1..2, j=1..5, f) = CalMatInt(i, f)*conj(CalMatInt(j+3, f)), where f = 1..nbins;

- 53/61

Step 3: Precalculate CM_BB: 3 x 3 x nBins calibration matrices for BB submatrix and EE submatrix

// Calibration matrix for BB submatrix

CM_BB(i=1..3, j=1..3, f) = CalMatInt(i,f)*conj(CalMatInt(j,f)), where f = 0..nbins-1;

// CM_EE: 3x3 calibration matrix for trace. Only needed if (length(indicesTrace) == 3) CM_EE(i=1..3.j=1..3,f) = CalMatInt(3+indicesTrace(i),f)*conj(CalMatInt(3+indicesTrace(j),f))

// Calibraiton coefficients for diagonal of E

CM_Ediag(i=1..5,f) = CalMatInt(i+3,f)*conj(CalMatInt(i+3,f))

Step 4: Initialize averaged matrix BB_avg(i,j,f), trace of E components E_trace(f) and Poynting component Sz(f) to zero.

18.5 **Routine processing, for every SM matrix received:**

Step 1: From FPGA, SW receives an a matrix **M_fpga** (8 x 8 x nbins). Apply averaging in frequency, if applicable to get "nBins" frequency bins.

Step 2: Generate calibrated sub-matrices EB and BB

 $BB(i,j,f) = M_fpga(i,j,f) * CM_BB(i,j,f)$, for all i, j, f - element-wise multiplication $BE(i,j,f) = M_fpga(i,3+j,f)*CM_BE(i,j,f)$, for all i, j, f - element-wise multiplication

And diagonal of calibrated E-field matrix:

 $E_diag(i,f) = M_fpga(3+i,3+i,f)*CM_Ediag(i,f);$

Step 3: Software waits until JMAG B field, spanning the time when M_fpga was averaged, is available.

B_jmag_mag = JMAG vector averaged over this interval (in MAG instrument coordinates).

Step 4: Using B_jmag, calculate TM_sc_mfa

// Convert JMAG B from JMAG coordinates to SC coordinates

B_jmag_sc = TM_mag_sc* B_jmag_mag;

// Create transformation matrix

T(3,:) = B_jmag_sc / norm(B_jmag_sc); T(2:,) = B_jmag_sc x [1,0,0] / norm(B_jmag_sc x [1,0,0]) T(1,:) = T(2,:) x T(3,:) TM_sc_mfa = T;

Step 5: Calculate
TM_scm_mfa = TM_sc_mfa*TM_scm_sc;

Step 6: Transform B components and antenna directions to MFA

for all f do: BB_mfa = TM_scm_mfa*BB*conj(TM_scm_mfa) BE_mfa = TM_scm_mfa*BE Ant_dir_mfa = TM_sc_mfa*Ant_dir_sc; // Ant_dir_* are unit vectors

Step 7: Calculate projections of Poynting vectors to JMAG B-field direction (Z-axis in MFA)

numavg = number of averaged FFTs in FPGA (constant);

```
for all frequencies f do:
  Sz(f) = 0;
  for i in <indicesED>:
     for i=1,2
       // Calculate variance (sigma^2) of each element of BE mfa
       // Use a formula from Priestley et al. (p. 702)
       var(BE mfa(j,i)) = BB mfa(j,j)*E diag(i) + real(BE mfa(j,i))^2 - imag(BE mfa(j,i))^2;
     end
     // calculate a projection of the Poynitng vector to MFA Z-axis
     // Ant dir mfa(i,j) is the i-th component of the unit direction vector of j-th antenna in MFA
     Sz_proj = real(BE_mfa(2,i)) * Ant_dir_mfa(1,i) - real(BE_mfa(1,i)) * Ant_dir_mfa(2,i)
     // calculate a normalization factor
     normf = sqrt((var(BE_mfa(2,i))*Ant_dir_mfa(1,i)^2 + var(BE_mfa(1,i)) * Ant_dir_mfa(2,i)^2) /
numavg);
     // accumulate the projections for all antennas
     Sz(f) += Sz_proj / normf;
   end
```

end

- 55/61

Step 8: Add to averaged values

for all f,

```
BB_avg(:,:,f) += BB_mfa(:,:,f);
```

```
Sz_avg(f) += Sz(f);
```

// EE_avg64 (I64 3x3 matrix): akumuluje se nekalibrovana 3x3 sub-matice EE podle indicesTrace

EE_avg64(:,:,f) += M_fpga(3+indicesTrace,3+indicesTrace,f);

endfor

18.6 Final processing after averaging of all matrices is completed:

Step 1: Calculate E_trace: Trace of E components averaged. If exactly 3 E components are selected, transform to orthogonal components before computiong trace.

for all f do:

```
EE_avg(i,j) = EE_avg64(i,j,f) * CM_EE(i,j,f), for all i, j
len = length(indicesTrace);
if (len < 3)
    E_trace(f) = sum(EE_avg(i,i,f)), for i=0:len-1
else // only if (length(indicesTrace) == 3)
    EE_trans = TM_ant_sc*EE_avg*conj(TM_ant_sc);
    E_trace(f) = sum(EE_trans(i,i,f)), for i=0:len-1
end</pre>
```

Step 2: Generate a packet with the following 4-byte structure for every frequency bin:

// Total number of averaged FFT spectra (FPGA & SW averaging combined)
tot_num_avg = numavg*num_averaged_matrices;

B_trace = trace(BB_avg)/tot_num_avg, converted to 8 bits via Util_LogEncode32to8

E_trace = E_trace/tot_num_avg, converted to 8 bits via Util_LogEncode32to8

Run SMX_Prassadco(BB_avg) to get:

```
float k_vector[3], ellipticity, planarity (ellipticity = -1 to 1, planarity 0..1, |k_vector| = 1)
```

Reduce to the following structure:

theta (4 bits 0-90deg, resolution 5.625deg): Angle between of k_vector and B0 magnetic field.

Theta [radians] = arccos(abs(kz)); // assuming k_vector = [kx, ky, kz] a |k_vector| = 1

Phi (4 bits, -180-180deg, 22.5deg resolution): Azimuthal angle of k_vector "around" B0.

Phi [radians] = atan2(ky, kx); // check if atan2 works OK if ky == 0 or kx == 0

ellipticity (3bits, signed -1..1), independent of B0, step 0.25

Planarity (3bit, unsigned, between 0-1), step 0.125, independent of B0

Sz_avg (2bit): Sz_avg/num_averaged_matrices reduce to 2 bits by comparing absolute value to a defined threshold (set in config) and keeping the sign. If below threshold => 0 or -1, if above threshold => -2 or 1.

Reset BB_avg, Sz_avg and EE_avg64 to zeros and start new averaging

19 Appendix **2**: Defaults configurations in SW2.0

19.1 Built-in LF configurations

The table below lists the default LF configurations hard-coded in SW2.0.

	Cfg #	Name	SIDs generated	MUX config	Description		
ľ	0						
	1	Long snapshot trigger		Dipole_LP	 Triggering with long snapshots @ 24 kHz. 3xB DWFS@763Hz, continuous <u>(37 kbit/s)</u> SMX 3B+3E, 1 x per 32s, 40 log bins. BP2, 3B+3E, 1 x per 1s, 40 log bins. STAT TSWF 7x96k samples, 1x per 2 minutes cycle <u>(90 kbit/s)</u> Triggering on AD5 (E2-E3). Preference waves 		
	2	LF trigger 2P dipole	4, 6, 9, 34, 39	Dipole_2P	Similar to config5, but only with 2 probes (P3/P4) enabled. Data products reduced. - no BP, SMX 4x4 every 8 sec		
Ī	3	LF trigger 2P dipole 24kHz	4, 6, 9, 34, 39	Dipole_2P	Same as config2, 24k kHz sampling		
	4	Fast-Linear_BP2 spectra	6, 39	Dipole_LP	 Fast-BP2 linear spectra (4 per second), 128-linear bins, 24 kHz sampling 3xB DWFS@763Hz, continuous (37 kbit/s) BP2, 120 linear bins, 0.2-11.5 kHz, averaged over 250 ms4 x per s (17 kbit/s). No snapshots, no trigger. No JMAG or RW data used 		
	5	LF trigger 4P dipole	4 (SMX), 6 (BP1), 9 (STAT), 34 (TSWF), 39 (DSWF)	Dipole_LP	 Standard dust detection mode. <u>49 kHz</u> <u>sampling</u> 3xB DWFS@763Hz, continuous<u>(37 kbit/s)</u> SMX 3B+3E, 1 x per 32s, 40 log_bins_(<u>~0 kbit/s)</u>. BP1 3B+3E, 1 x per 4s, 20 log_bins<u>(~0 kbit/s)</u>. STAT TSWF 8x16k samples, 1x per 30s cycle_(<u>60kbit/s)</u> Triggering on AD4 (E1) No JMAG, no RW 		
f	6	LF trigger 4P	3, 4, 6, 9, 34,	Mono_4P	Same as config5, but with monopole MUX		

JUICE RPWI LF digital interface

Ref: JUI-IAP-RPWI-LF-DIF Issue: 01 Revision: 1<u>5</u>4 Date: 04/10/2023

- 58/61 -

	mono	39		configuration (use AD5678).
				 TSWF 7x16k samples, 1x per 30s cycle Triggering on AD8 (E4)
7	LF trigger 4P dipole 24kHz	3, 4, 6, 9, 34, 39	Dipole_LP	Same as config5, but with sampling reduced to 24 kHz configuration.
8	EMC / test mode	33, 39	Mono_4P	Generates regular snapshots 7x8k every 5 seconds + continuous DSWF. Should be run without sequencer.
9	SCM sweep config	33, 39	Mono_4P	SC config sweep. Takes 1 long snapshot + DSWF. Should be run 2 minutes with or without sequencer.
10	LF density 4P 24 kHz		Dens_4P	 Heaven mode - triggered snapshots 32k @ 24 kHz, no spectra 3xB DWF@24Hz 3xB DWFS@763Hz, continuous STAT TSWF 7x32k samples, 1x per 30s cycle Triggering on AD5 (D1).
11	No trigger mode dipole	4 (SMX), 6 (BP1), 34 (TSWF), 39 (DSWF)	Dipole_LP	 <u>49 kHz</u> No internal triggering. TSWF is taken on conclude event. 3xB DWFS@763Hz, continuous SMX 3B+3E, 1 x per 32s. BP1 3B+3E, 1 x per 8s. TSWF 7x16k samples, 1x per 30s cycle
12	No trigger mode monopole		Mono_4P	Same as cfg 11, monopole config.
13	Test mode	4 (SMX), 6 (BP2), 9 (STAT), 34 (TSWF), 39 (DSWF)	Mono_4P	 Hell mode for testing of RW and JMAG onboard configuration: 24 kHz sampling 3xB DWFS@763Hz, continuous BP2 every 1 sec, 40 log bins (1.3 kbit/s) SMX 3B+3E, 1 x per 1s., 40 log bins TSWF 7x32k samples, 1x per 30s cycle Enabled RW and JMAG data use in BP2 BP2 synchronized with snapshots
14	Earth-Ganymede mode	4 (SMX), 8 (BP2), 9 (STAT), 34 (TSWF), 39 (DSWF)	Dipole_LP	 Earth flyby whistler mode testing the Ganymede orbit. High resolution BP2 spectra + long snapshots, 24 kHz sampling 3xB DWFS@763Hz, continuous <u>(37 kbit/s)</u> SMX 3B+3E, 1 x per 28s, 1280 lin bins <u>(1.5 kbit/s)</u>. BP2, 4 x per sec, 1280 lin bins <u>(17)</u>

		Ref: JUI-IAP-RPWI-LF-DIF				
	JUICE RPWI LF digital interface	Issue: 01 Revision: 1 <u>5</u> 4 Date: 04/10/2023				
		- 59/61				

				kbit/s) - STAT - TSWF 7x96k samples, 1x per 60s preference waves (180 kbit/s) - No JMAG, no RW Triggering on AD5 (E2-E3)
15	Survey minimum TM	8 (BP2)	Dipole_LP	Low resolution BP2 spectra + no snapshots, 24 kHz sampling BP2, 1 x per sec, 40 log bins(<u>1.3 kbit/s</u>) No JMAG, no RW

19.2 Standard E-field mux configs used in the above LF configurations

Table 19-2: Configuration of multiplexers used in standard configurations. Highlighted components are the ones which are usually transmitted (others are filtered by software)

Name	AD4	AD5	AD6 AD7 AD8		AD8	Register values / SW selection			
Dipole_4P	E1	E1-E3	E2-E4	E2-E1	SUM	SW= (031f, 803F, 001f, 8112)			
						3 differential signals, 1 x SUM, 1 x E1			
Mono_4P	E1	E1	E3	E2	E4	SW= (031f, 8000, 021f, 8DEE)			
						4 single probe signals			
Dipole_2P	E1	-E3	E3-E4	E2	E4	SW= (031f, 8000, 021f, 8D23)			
						Only P3 and P4 used, single probe signal + difference			
Dens_4P	E1	D1	D3	D4	D2	SW= (031f, 803f, 051f, 8777)			
						4 single probe signals in density mode			
Dipole_LP	E1	E2-E3	2-E3 E3-E4 E2		SUM	SW= (031f, 803F, 001f, 8121)			
						Compatible with LP configuration			
						3 differential signals, 1 x SUM, 1 x E1			
Dipole_uber	E1	E2-E3	E2-E4	E4-E1	SUM	SW= (031f, 803F, 001f, 8211)			
						Super awesome dipole configuration			
						3 differential signals, 1 x SUM, 1 x E1			

19.3 Use of LF configurations in RPWI operational sequences

This table lists the proposed default assignment of LF configurations to the LF sequences.

seq#	LF	LP	Radio	MIME	LF Comment
1	LFO 1	11.1	Radio Burst	MIME Sweep	96k snapshot 3D 24kHz
2	LFO 2	11.1	Radio Burst	MIME Tracking	16k snapshot 2D 49kHz
3	LF1 5	10.0	Radio Full	MIME OFF	minimum TM survey
4	LF1 4	11.2	Radio Full	MIME Sweep	Earth and Ganymede mode 1
5	LFO 3	11.1	Radio PSSR-1	MIME Sweep	16k snapshot 2D 24kHz
6	LFO 5	11.1	Radio PSSR-2	MIME Sweep	16k snapshot 3D 49kHz
7	LFO 6	11.1	Radio PSSR-3	MIME Sweep	16k snapshot 3Dmono 49kHz
8	LFO 7	11.2	Radio PSSR-3	MIME Wide Sweep	16k snapshot 3D 24kHz
9	LFO 1	11.1	Radio PSSR-3	MIME Tracking	96k snapshot 3D 24kHz
10	LF1 1	11.1	Radio Full	MIME B-field	No trigger
11	LFO 4	11.2	Radio Full	MIME Sweep	whistler test 1
12	LF1 2	11.1	Radio Full	MIME Tracking	No trigger mono
13	LFO 1	11.1	Radio Burst	MIME B-field	96k snapshot 3D 24kHz
14	LF1 0	11.4	Radio full	MIME OFF	density interferometry
15	LF1 4	11.2	Radio Full	MIME Wide Sweep	Earth and Ganymede mode 2
16	LFO 4	11.2	Radio Burst	MIME Wide Sweep	whistler test 2
17	LF1 3	11.3	Radio Full	MIME Wide Sweep	LF on-board processing advanced configuration test mode
18	LFO 1	11.3	Radio Burst	MIME Wide Sweep	96k snapshot 3D 24kHz
19	LFO 1	11.1	Radio Burst	MIME Tracking	96k snapshot 3D 24kHz
20	LF1	11.4	Radio Burst	MIME OFF	density interferometry

JUICE RPWI LF digital interface					R Is D	Ref: JUI-IAP-RPWI-LF-DIF Issue: 01 Revision: 1 <u>5</u> 4 Date: 04/10/2023			1 <u>5</u> 4		
										- 61/6	i1 -
	0										
	0										