Sensors for Wide band Magnetic field Measurement SWIMM

ICI4

LPP (Laboratoire de Physique des Plasmas) & L2E (Laboratoire d'Electronique et d'Electromagnétisme) & DT INSU

TEAM ORGANIZATION

	Institute	Function	
Patrick Robert		Scientists	
Mathieu Berthommier			
Alexis Jeandet	LPP	Technical Manager & digital board design	
Dominique Alison		Analog electronic board design	
Christophe Coillot		Search-coil sensor design & ASIC design	
Paul Leroy		ASIC design	
Kaveh Moahamadabadi	LPP/SYSNAV	AMR magnetometer design	
Nicolas Gesykens	DT-INSU (tbc)	Mechanical & Thermal design	
Gérard Sou/Amine Rhouni	L2E	ASIC design	

2

SWiMM OVERVIEW

Tri axis search coil magnetometer few Hz up to 15kHz

-Option 1 : 2 LF sensors ([Hz;15kHz) and 1 Dual band sensor identical to OHMIC mission ([Hz; 15kHz] (in fact 30kHz for Ohmic))

-Option 2 : 3 sensors identical to MMS ([1Hz;15kHz])

-Tri axis AMR magnetometer

-Option 2 : 4 AMR magnetometer on a square PCB (10cm*10cm) in gradiometer configuration for trajectory of the rocket recovery

-Option1: single AMR magnetometer (1nT resolution in 10Hz BW)

-Analog and digital electronic board

Tri axis search coil magnetometer few Hz up to 15kHz

SWiMM Heritage

CLUSTER and THEMIS Heritage Bepicolombo & MMS are on going ICI 4 search coil will be based on OHMIC performances

3 sensors: 180mm length and 14mm diameter SWiMM Sensors should be mounted on a boom (>50cm)

ASIC Low Noise Preamplifier

▲ 1 ASIC included: 2 stages amplifier & feedback manager & temperature compensated voltage regulator
▲ Low power consumption (I<2mA per channel)
▲ 1 PA per sensor : 1 PA for [Hz; 15kHz]
→ design of ASIC in CMOS 0.35µm technology

ASIC low noise preamplifier

- > Frequency bandwidth : 100mHz-50kHz
- ≻ Input noise: 4 nV/√Hz @ 10 Hz
- Gain: 83 dB
- Power consumption: 12mW
- Chip 2.2*2.3mm
- > Temperature operating range: -70°C; +80°C

SWiMM magnetic noise objective

Noise Equivalent magnetic Induction objective: **1.8pT/sqrt(Hz)** @ 10Hz **18fT/sqrt(Hz)** @ 1kHz **4fT/sqrt(Hz)** @ 10kHz

Tri axis AMR magnetometer

Based on Honeywell AMR sensors

Tri axis measurement : norm of Earth Bfield Operating under 0/+5V Power consumption <500mW per magnetometer On board processing (linearity improvement)

Analog and digital electronic board

SWiMM Electrical/Mechanical interfaces

Electrical interfaces :

Divided in 3 words of 8 bits for DC and 2 words of 8 bits for AC
NEMI of DC and AC magnetic field is reached

Mechanical interface

Search coil Preamplifier board + AMR gradiometer board + digital board will be mounted inside a single aluminium housing (heritage ICI3). Size will be:

SWiMM Budget Telemetry:

	Option 1 for search coil	
	Option 1 for AMR	
B "AC" (Search coil)	3*16 bits	
	1*12bits	
Frequency Range (TBC)	3*1Hz-15kHz tbc	
	1*1Hz-100kHz	
B "DC" (AMR)	3*24 bits	
Frequency Range	DC-1kHz	
Total Digital TM	1992kb/s	

=> Synchronization with E field

SWiMM Budget Mass/Power consumption:

	Mass	Power consumption (mW)
Search Coils Sensors	3*45 gr	N.A.
Mechanical structure	200 gr	N.A.
Search coils Electronic analog+digital	350gr	2W (+/-25%)
AMR sensor+electronic	150gr	4*500mW

Mass of tri-axis sensor will be ligther than for ICI 3 <400gr

SWiMM Funding:

25kE have been allocated by CNES to manufacture the instrument (including boom funding...).

Funding for mission will be asked to CNES (25kE => 1 technical meeting for 3 pers+2 integrations for 2 persons+1 launch mission for 2 persons)

CONCLUSION & Open points

Open points

- -Electronic board for ICI4 could be at cubeSat format => **TBC**.
- -Rocket trajectory computation through gradiometer ?
- -Voltage supply: 28V ?
- Spin frequency ? Maximum angle between magnetic field line and rocket ?
- Boom cost ?
- Temperature & voltage supply monitoring ?
- Telemetry : <15kHz ?

Capteur magnétique de type fluxmètre: principe & design : utilisation d'une contre-réaction de flux

Capteur magnétique de type fluxmètre: principe & design : utilisation d'une contre-réaction de flux

➢La bande de fréquence 100mHz à qq. kHz