1
|
// In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013) => R2 FSW
|
2
|
// version 1.0: 31/07/2013
|
3
|
// version 1.1: 02/04/2014
|
4
|
// version 1.2: 30/04/2014
|
5
|
// version 1.3: 02/05/2014
|
6
|
// version 1.4: 16/05/2014
|
7
|
// version 1.5: 20/05/2014
|
8
|
// version 1.6: 19/12/2014
|
9
|
// version 1.7: 15/01/2015 (modifs de Paul + correction erreurs qui se compensaient (LSB <=> MSB + indices [0,2] <=> [1,3])
|
10
|
// version 1.8: 02/02/2015 (gestion des divisions par zéro)
|
11
|
// In the frame of RPW LFR Sofware ICD Issue3 Rev6 (27/01/2015) => R3 FSW
|
12
|
// version 2.0: 19/06/2015
|
13
|
// version 2.1: 22/06/2015 (modifs de Paul)
|
14
|
// version 2.2: 23/06/2015 (modifs de l'ordre de déclaration/définition de init_k_coefficients dans basic_parameters.c ... + maintien des declarations dans le .h)
|
15
|
// version 2.3: 01/07/2015 (affectation initiale des octets 7 et 9 dans les BP1 corrigée ...)
|
16
|
// version 2.4: 05/10/2018 (mise en conformité LOGISCOPE)
|
17
|
|
18
|
/*------------------------------------------------------------------------------
|
19
|
-- Solar Orbiter's Low Frequency Receiver Flight Software (LFR FSW),
|
20
|
-- This file is a part of the LFR FSW
|
21
|
-- Copyright (C) 2012-2018, Plasma Physics Laboratory - CNRS
|
22
|
--
|
23
|
-- This program is free software; you can redistribute it and/or modify
|
24
|
-- it under the terms of the GNU General Public License as published by
|
25
|
-- the Free Software Foundation; either version 2 of the License, or
|
26
|
-- (at your option) any later version.
|
27
|
--
|
28
|
-- This program is distributed in the hope that it will be useful,
|
29
|
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
30
|
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
31
|
-- GNU General Public License for more details.
|
32
|
--
|
33
|
-- You should have received a copy of the GNU General Public License
|
34
|
-- along with this program; if not, write to the Free Software
|
35
|
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
36
|
-------------------------------------------------------------------------------*/
|
37
|
/*-- Author : Thomas Chust
|
38
|
-- Contact : Thomas Chust
|
39
|
-- Mail : thomas.chust@lpp.polytechnique.fr
|
40
|
----------------------------------------------------------------------------*/
|
41
|
|
42
|
#ifndef BASIC_PARAMETERS_H_INCLUDED
|
43
|
#define BASIC_PARAMETERS_H_INCLUDED
|
44
|
|
45
|
#include <math.h>
|
46
|
#include <stdio.h>
|
47
|
#include <stdint.h>
|
48
|
|
49
|
#include "basic_parameters_params.h"
|
50
|
|
51
|
static inline void BP1_set(float * compressed_spec_mat, float * k_coeff_intercalib, unsigned char nb_bins_compressed_spec_mat, unsigned char * lfr_bp1);
|
52
|
static inline void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * lfr_bp2);
|
53
|
|
54
|
void init_k_coefficients_f0( float *k_coeff_intercalib, unsigned char nb_binscompressed_matrix );
|
55
|
void init_k_coefficients_f1( float *k_coeff_intercalib, unsigned char nb_binscompressed_matrix );
|
56
|
void init_k_coefficients_f2( float *k_coeff_intercalib, unsigned char nb_binscompressed_matrix );
|
57
|
|
58
|
void init_k_coefficients( float *k_coeff_intercalib, unsigned char nb_binscompressed_matrix );
|
59
|
|
60
|
//***********************************
|
61
|
// STATIC INLINE FUNCTION DEFINITIONS
|
62
|
|
63
|
void BP1_set( float * compressed_spec_mat, float * k_coeff_intercalib, uint8_t nb_bins_compressed_spec_mat, uint8_t * lfr_bp1 ){
|
64
|
float PSDB; // 32-bit floating point
|
65
|
float PSDE;
|
66
|
float tmp;
|
67
|
float NVEC_V0;
|
68
|
float NVEC_V1;
|
69
|
float NVEC_V2;
|
70
|
float aux;
|
71
|
float tr_SB_SB;
|
72
|
float e_cross_b_re;
|
73
|
float e_cross_b_im;
|
74
|
float n_cross_e_scal_b_re;
|
75
|
float n_cross_e_scal_b_im;
|
76
|
float ny;
|
77
|
float nz;
|
78
|
float bx_bx_star;
|
79
|
float vphi;
|
80
|
float significand;
|
81
|
int exponent; // 32-bit signed integer
|
82
|
float alpha_M;
|
83
|
|
84
|
uint8_t nbitexp; // 8-bit unsigned integer
|
85
|
uint8_t nbitsig;
|
86
|
uint8_t tmp_uint8;
|
87
|
uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
|
88
|
int8_t expmin; // 8-bit signed integer
|
89
|
int8_t expmax;
|
90
|
uint16_t rangesig; // 16-bit unsigned integer
|
91
|
uint16_t psd;
|
92
|
uint16_t exp;
|
93
|
uint16_t tmp_uint16;
|
94
|
uint16_t i;
|
95
|
|
96
|
alpha_M = 45 * (3.1415927/180);
|
97
|
|
98
|
#ifdef DEBUG_TCH
|
99
|
printf("BP1 : \n");
|
100
|
printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
|
101
|
#endif
|
102
|
|
103
|
// initialization for managing the exponents of the floating point data:
|
104
|
nbitexp = 6; // number of bits for the exponent
|
105
|
expmax = 32+5; // maximum value of the exponent
|
106
|
expmin = (expmax - (1 << nbitexp)) + 1; // accordingly the minimum exponent value
|
107
|
// for floating point data to be recorded on 16-bit words:
|
108
|
nbitsig = 16 - nbitexp; // number of bits for the significand
|
109
|
rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
|
110
|
|
111
|
#ifdef DEBUG_TCH
|
112
|
printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
|
113
|
printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
|
114
|
#endif
|
115
|
|
116
|
for(i=0; i<nb_bins_compressed_spec_mat; i++){
|
117
|
//==============================================
|
118
|
// BP1 PSDB == PA_LFR_SC_BP1_PB_F0 == 16 bits = 6 bits (exponent) + 10 bits (significand)
|
119
|
PSDB = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] // S11
|
120
|
+ compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] // S22
|
121
|
+ compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]; // S33
|
122
|
|
123
|
significand = frexpf(PSDB, &exponent); // 0.5 <= significand < 1
|
124
|
// PSDB = significand * 2^exponent
|
125
|
|
126
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
127
|
exponent = expmin;
|
128
|
significand = 0.5; // min value that can be recorded
|
129
|
}
|
130
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
131
|
exponent = expmax;
|
132
|
significand = 1.0; // max value that can be recorded
|
133
|
}
|
134
|
if (significand == 0) { // in that case exponent == 0 too
|
135
|
exponent = expmin;
|
136
|
significand = 0.5; // min value that can be recorded
|
137
|
}
|
138
|
|
139
|
psd = (uint16_t) ((((significand*2) - 1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
140
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
141
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
142
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
143
|
tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
144
|
// left place of the significand bits (nbitsig),
|
145
|
// making the 16-bit word to be recorded
|
146
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
147
|
#ifdef MSB_FIRST_TCH
|
148
|
lfr_bp1[(i*NB_BYTES_BP1)+2] = pt_uint8[0]; // Record MSB of tmp_uint16
|
149
|
lfr_bp1[(i*NB_BYTES_BP1)+3] = pt_uint8[1]; // Record LSB of tmp_uint16
|
150
|
#endif
|
151
|
#ifdef LSB_FIRST_TCH
|
152
|
lfr_bp1[(i*NB_BYTES_BP1)+2] = pt_uint8[1]; // Record MSB of tmp_uint16
|
153
|
lfr_bp1[(i*NB_BYTES_BP1)+3] = pt_uint8[0]; // Record LSB of tmp_uint16
|
154
|
#endif
|
155
|
#ifdef DEBUG_TCH
|
156
|
printf("\nBin number: %d\n", i);
|
157
|
printf("PSDB : %16.8e\n",PSDB);
|
158
|
printf("significand : %16.8e\n",significand);
|
159
|
printf("exponent : %d\n" ,exponent);
|
160
|
printf("psd for PSDB significand : %d\n",psd);
|
161
|
printf("exp for PSDB exponent : %d\n",exp);
|
162
|
printf("pt_uint8[1] for PSDB exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
|
163
|
printf("pt_uint8[0] for PSDB significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
|
164
|
printf("lfr_bp1[i*NB_BYTES_BP1+2] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+2], lfr_bp1[i*NB_BYTES_BP1+2]);
|
165
|
printf("lfr_bp1[i*NB_BYTES_BP1+3] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+3], lfr_bp1[i*NB_BYTES_BP1+3]);
|
166
|
#endif
|
167
|
//==============================================
|
168
|
// BP1 PSDE == PA_LFR_SC_BP1_PE_F0 == 16 bits = 6 bits (exponent) + 10 bits (significand)
|
169
|
PSDE = (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K44_PE]) // S44
|
170
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K55_PE]) // S55
|
171
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 22] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K45_PE_RE]) // S45 Re
|
172
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 23] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K45_PE_IM]); // S45 Im
|
173
|
|
174
|
significand = frexpf(PSDE, &exponent); // 0.5 <= significand < 1
|
175
|
// PSDE = significand * 2^exponent
|
176
|
|
177
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
178
|
exponent = expmin;
|
179
|
significand = 0.5; // min value that can be recorded
|
180
|
}
|
181
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
182
|
exponent = expmax;
|
183
|
significand = 1.0; // max value that can be recorded
|
184
|
}
|
185
|
if (significand == 0) {// in that case exponent == 0 too
|
186
|
exponent = expmin;
|
187
|
significand = 0.5; // min value that can be recorded
|
188
|
}
|
189
|
|
190
|
psd = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
191
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
192
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
193
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
194
|
tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
195
|
// left place of the significand bits (nbitsig),
|
196
|
// making the 16-bit word to be recorded
|
197
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
198
|
#ifdef MSB_FIRST_TCH
|
199
|
lfr_bp1[(i*NB_BYTES_BP1) + 0] = pt_uint8[0]; // Record MSB of tmp_uint16
|
200
|
lfr_bp1[(i*NB_BYTES_BP1) + 1] = pt_uint8[1]; // Record LSB of tmp_uint16
|
201
|
#endif
|
202
|
#ifdef LSB_FIRST_TCH
|
203
|
lfr_bp1[(i*NB_BYTES_BP1) + 0] = pt_uint8[1]; // Record MSB of tmp_uint16
|
204
|
lfr_bp1[(i*NB_BYTES_BP1) + 1] = pt_uint8[0]; // Record LSB of tmp_uint16
|
205
|
#endif
|
206
|
#ifdef DEBUG_TCH
|
207
|
printf("PSDE : %16.8e\n",PSDE);
|
208
|
printf("significand : %16.8e\n",significand);
|
209
|
printf("exponent : %d\n" ,exponent);
|
210
|
printf("psd for PSDE significand : %d\n",psd);
|
211
|
printf("exp for PSDE exponent : %d\n",exp);
|
212
|
printf("pt_uint8[1] for PSDE exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
|
213
|
printf("pt_uint8[0] for PSDE significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
|
214
|
printf("lfr_bp1[i*NB_BYTES_BP1+0] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+0], lfr_bp1[i*NB_BYTES_BP1+0]);
|
215
|
printf("lfr_bp1[i*NB_BYTES_BP1+1] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+1], lfr_bp1[i*NB_BYTES_BP1+1]);
|
216
|
#endif
|
217
|
//==============================================================================
|
218
|
// BP1 normal wave vector == PA_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
|
219
|
// == PA_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
|
220
|
// == PA_LFR_SC_BP1_NVEC_V2_F0 == 1 sign bit
|
221
|
tmp = sqrt( (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] *compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2]) //Im S12
|
222
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4] *compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4]) //Im S13
|
223
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]) //Im S23
|
224
|
);
|
225
|
if (tmp != 0.) { // no division by 0.
|
226
|
NVEC_V0 = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11] / tmp; // S23 Im => n1
|
227
|
NVEC_V1 = (-compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4]) / tmp; // S13 Im => n2
|
228
|
NVEC_V2 = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] / tmp; // S12 Im => n3
|
229
|
}
|
230
|
else
|
231
|
{
|
232
|
NVEC_V0 = 0.;
|
233
|
NVEC_V1 = 0.;
|
234
|
NVEC_V2 = 0.;
|
235
|
}
|
236
|
lfr_bp1[(i*NB_BYTES_BP1) + 4] = (uint8_t) ((NVEC_V0*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
237
|
lfr_bp1[(i*NB_BYTES_BP1) + 5] = (uint8_t) ((NVEC_V1*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
238
|
pt_uint8 = (uint8_t*) &NVEC_V2; // Affect an uint8_t pointer with the adress of NVEC_V2
|
239
|
#ifdef LSB_FIRST_TCH
|
240
|
lfr_bp1[(i*NB_BYTES_BP1) + 6] = pt_uint8[3] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 4th octet:PC convention)
|
241
|
// Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
|
242
|
#endif
|
243
|
#ifdef MSB_FIRST_TCH
|
244
|
lfr_bp1[(i*NB_BYTES_BP1) + 6] = pt_uint8[0] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 1th octet:SPARC convention)
|
245
|
// Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
|
246
|
#endif
|
247
|
#ifdef DEBUG_TCH
|
248
|
printf("NVEC_V0 : %16.8e\n",NVEC_V0);
|
249
|
printf("NVEC_V1 : %16.8e\n",NVEC_V1);
|
250
|
printf("NVEC_V2 : %16.8e\n",NVEC_V2);
|
251
|
printf("lfr_bp1[i*NB_BYTES_BP1+4] for NVEC_V0 : %u\n",lfr_bp1[i*NB_BYTES_BP1+4]);
|
252
|
printf("lfr_bp1[i*NB_BYTES_BP1+5] for NVEC_V1 : %u\n",lfr_bp1[i*NB_BYTES_BP1+5]);
|
253
|
printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
|
254
|
#endif
|
255
|
//=======================================================
|
256
|
// BP1 ellipticity == PA_LFR_SC_BP1_ELLIP_F0 == 4 bits
|
257
|
if (PSDB != 0.) { // no division by 0.
|
258
|
aux = 2*tmp / PSDB; // Compute the ellipticity
|
259
|
}
|
260
|
else
|
261
|
{
|
262
|
aux = 0.;
|
263
|
}
|
264
|
tmp_uint8 = (uint8_t) ((aux*15) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
|
265
|
// where just the first 4 bits are used (0, ..., 15)
|
266
|
lfr_bp1[(i*NB_BYTES_BP1) + 6] = lfr_bp1[(i*NB_BYTES_BP1) + 6] | (tmp_uint8 << 3); // Put these 4 bits next to the right place
|
267
|
// of the sign bit of NVEC_V2 (recorded
|
268
|
// previously in lfr_bp1[i*NB_BYTES_BP1+6])
|
269
|
#ifdef DEBUG_TCH
|
270
|
printf("ellipticity : %16.8e\n",aux);
|
271
|
printf("tmp_uint8 for ellipticity : %u\n",tmp_uint8);
|
272
|
printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
|
273
|
#endif
|
274
|
//==============================================================
|
275
|
// BP1 degree of polarization == PA_LFR_SC_BP1_DOP_F0 == 3 bits
|
276
|
tr_SB_SB = (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX])
|
277
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9])
|
278
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16])
|
279
|
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 1] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 1])
|
280
|
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2])
|
281
|
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 3] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 3])
|
282
|
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4])
|
283
|
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10]* compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10])
|
284
|
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]* compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]);
|
285
|
aux = PSDB*PSDB;
|
286
|
if (aux != 0.) { // no division by 0.
|
287
|
tmp = ( 3*tr_SB_SB - aux ) / ( 2 * aux ); // Compute the degree of polarisation
|
288
|
}
|
289
|
else
|
290
|
{
|
291
|
tmp = 0.;
|
292
|
}
|
293
|
tmp_uint8 = (uint8_t) ((tmp*7) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
|
294
|
// where just the first 3 bits are used (0, ..., 7)
|
295
|
lfr_bp1[(i*NB_BYTES_BP1) + 6] = lfr_bp1[(i*NB_BYTES_BP1) + 6] | tmp_uint8; // Record these 3 bits at the 3 first bit positions
|
296
|
// (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
|
297
|
#ifdef DEBUG_TCH
|
298
|
printf("DOP : %16.8e\n",tmp);
|
299
|
printf("tmp_uint8 for DOP : %u\n",tmp_uint8);
|
300
|
printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity + DOP : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
|
301
|
#endif
|
302
|
//=======================================================================================
|
303
|
// BP1 X_SO-component of the Poynting flux == PA_LFR_SC_BP1_SX_F0 == 16 bits
|
304
|
// = 1 sign bit + 1 argument bit (two sectors)
|
305
|
// + 6 bits (exponent) + 8 bits (significand)
|
306
|
e_cross_b_re = (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_RE]) //S34 Re
|
307
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_RE]) //S35 Re
|
308
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 5] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_RE]) //S14 Re
|
309
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 7] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_RE]) //S15 Re
|
310
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_RE]) //S24 Re
|
311
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_RE]) //S25 Re
|
312
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_IM]) //S34 Im
|
313
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_IM]) //S35 Im
|
314
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 6] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_IM]) //S14 Im
|
315
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 8] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_IM]) //S15 Im
|
316
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_IM]) //S24 Im
|
317
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_IM]); //S25 Im
|
318
|
// Im(S_ji) = -Im(S_ij)
|
319
|
// k_ji = k_ij
|
320
|
e_cross_b_im = (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_IM]) //S34 Re
|
321
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_IM]) //S35 Re
|
322
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 5] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_IM]) //S14 Re
|
323
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 7] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_IM]) //S15 Re
|
324
|
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_IM]) //S24 Re
|
325
|
+ ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_IM]) //S25 Re
|
326
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_RE]) //S34 Im
|
327
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_RE]) //S35 Im
|
328
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 6] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_RE]) //S14 Im
|
329
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 8] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_RE]) //S15 Im
|
330
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_RE]) //S24 Im
|
331
|
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_RE])); //S25 Im
|
332
|
#ifdef DEBUG_TCH
|
333
|
printf("ReaSX : %16.8e\n",e_cross_b_re);
|
334
|
#endif
|
335
|
pt_uint8 = (uint8_t*) &e_cross_b_re; // Affect an uint8_t pointer with the adress of e_cross_b_re
|
336
|
#ifdef LSB_FIRST_TCH
|
337
|
|
338
|
lfr_bp1[(i*NB_BYTES_BP1) + 7] = (uint8_t) (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
|
339
|
// Record it at the 8th bit position (from the right to the left)
|
340
|
// of lfr_bp1[i*NB_BYTES_BP1+7]
|
341
|
pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
|
342
|
#endif
|
343
|
#ifdef MSB_FIRST_TCH
|
344
|
lfr_bp1[(i*NB_BYTES_BP1) + 7] = (uint8_t) (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 1th octet:SPARC convention)
|
345
|
// Record it at the 8th bit position (from the right to the left)
|
346
|
// of lfr_bp1[i*NB_BYTES_BP1+7]
|
347
|
pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
|
348
|
#endif
|
349
|
significand = frexpf(e_cross_b_re, &exponent); // 0.5 <= significand < 1
|
350
|
// ReaSX = significand * 2^exponent
|
351
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
352
|
exponent = expmin;
|
353
|
significand = 0.5; // min value that can be recorded
|
354
|
}
|
355
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
356
|
exponent = expmax;
|
357
|
significand = 1.0; // max value that can be recorded
|
358
|
}
|
359
|
if (significand == 0) { // in that case exponent == 0 too
|
360
|
exponent = expmin;
|
361
|
significand = 0.5; // min value that can be recorded
|
362
|
}
|
363
|
|
364
|
lfr_bp1[(i*NB_BYTES_BP1) + 8] = (uint8_t) ((((significand*2)-1)*255) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
|
365
|
// where all bits are used (0, ..., 255)
|
366
|
tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
|
367
|
// just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
368
|
#ifdef DEBUG_TCH
|
369
|
printf("|ReaSX| : %16.8e\n",e_cross_b_re);
|
370
|
printf("significand : %16.8e\n",significand);
|
371
|
printf("exponent : %d\n" ,exponent);
|
372
|
printf("tmp_uint8 for ReaSX exponent : %d\n",tmp_uint8);
|
373
|
#endif
|
374
|
lfr_bp1[(i*NB_BYTES_BP1) + 7] = lfr_bp1[(i*NB_BYTES_BP1) + 7] | tmp_uint8; // Record these nbitexp bits in the nbitexp first bits
|
375
|
// (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+7]
|
376
|
#ifdef DEBUG_TCH
|
377
|
printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX sign + RealSX exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
|
378
|
printf("lfr_bp1[i*NB_BYTES_BP1+8] for ReaSX significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+8]);
|
379
|
printf("ImaSX : %16.8e\n",e_cross_b_im);
|
380
|
#endif
|
381
|
pt_uint8 = (uint8_t*) &e_cross_b_im; // Affect an uint8_t pointer with the adress of e_cross_b_im
|
382
|
#ifdef LSB_FIRST_TCH
|
383
|
pt_uint8[3] = pt_uint8[3] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX| (32-bit float, sign bit in the 4th octet:PC convention)
|
384
|
#endif
|
385
|
#ifdef MSB_FIRST_TCH
|
386
|
pt_uint8[0] = pt_uint8[0] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX| (32-bit float, sign bit in the 1th octet:SPARC convention)
|
387
|
#endif
|
388
|
// Determine the sector argument of SX. If |Im| > |Re| affect
|
389
|
// an unsigned 8-bit char with 01000000; otherwise with null.
|
390
|
if (e_cross_b_im > e_cross_b_re) {
|
391
|
tmp_uint8 = 0x40;
|
392
|
}
|
393
|
else {
|
394
|
tmp_uint8 = 0x00;
|
395
|
}
|
396
|
|
397
|
lfr_bp1[(i*NB_BYTES_BP1) + 7] = lfr_bp1[(i*NB_BYTES_BP1) + 7] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
|
398
|
// to the left) of lfr_bp1[i*NB_BYTES_BP1+7], by simple logical addition.
|
399
|
#ifdef DEBUG_TCH
|
400
|
printf("|ImaSX| : %16.8e\n",e_cross_b_im);
|
401
|
printf("ArgSX sign : %u\n",tmp_uint8);
|
402
|
printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX & ArgSX signs + ReaSX exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
|
403
|
#endif
|
404
|
//======================================================================
|
405
|
// BP1 phase velocity estimator == PA_LFR_SC_BP1_VPHI_F0 == 16 bits
|
406
|
// = 1 sign bit + 1 argument bit (two sectors)
|
407
|
// + 6 bits (exponent) + 8 bits (significand)
|
408
|
ny = (sin(alpha_M)*NVEC_V1) + (cos(alpha_M)*NVEC_V2);
|
409
|
nz = NVEC_V0;
|
410
|
bx_bx_star = (cos(alpha_M)*cos(alpha_M)*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9]) // S22 Re
|
411
|
+ ((sin(alpha_M)*sin(alpha_M)*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]) // S33 Re
|
412
|
- (2*sin(alpha_M)*cos(alpha_M)*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10])); // S23 Re
|
413
|
|
414
|
n_cross_e_scal_b_re = (ny * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_RE]) //S24 Re
|
415
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_RE]) //S25 Re
|
416
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_RE]) //S34 Re
|
417
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_RE]) //S35 Re
|
418
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_IM]) //S24 Im
|
419
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_IM]) //S25 Im
|
420
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_IM]) //S34 Im
|
421
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_IM]))) //S35 Im
|
422
|
+ (nz * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_RE]) //S24 Re
|
423
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_RE]) //S25 Re
|
424
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_RE]) //S34 Re
|
425
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_RE]) //S35 Re
|
426
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_IM]) //S24 Im
|
427
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_IM]) //S25 Im
|
428
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_IM]) //S34 Im
|
429
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_IM])));//S35 Im
|
430
|
// Im(S_ji) = -Im(S_ij)
|
431
|
// k_ji = k_ij
|
432
|
n_cross_e_scal_b_im = (ny * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_IM]) //S24 Re
|
433
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_IM]) //S25 Re
|
434
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_IM]) //S34 Re
|
435
|
+((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_IM]) //S35 Re
|
436
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_RE]) //S24 Im
|
437
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_RE]) //S25 Im
|
438
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_RE]) //S34 Im
|
439
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_RE])))) //S35 Im
|
440
|
+ (nz * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_IM]) //S24 Re
|
441
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_IM]) //S25 Re
|
442
|
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_IM] ) //S34 Re
|
443
|
+((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_IM]) //S35 Re
|
444
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_RE]) //S24 Im
|
445
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_RE]) //S25 Im
|
446
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_RE]) //S34 Im
|
447
|
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_RE]))));//S35 Im
|
448
|
#ifdef DEBUG_TCH
|
449
|
printf("n_cross_e_scal_b_re : %16.8e\n",n_cross_e_scal_b_re);
|
450
|
printf("n_cross_e_scal_b_im : %16.8e\n",n_cross_e_scal_b_im);
|
451
|
#endif
|
452
|
// vphi = n_cross_e_scal_b_re / bx_bx_star => sign(VPHI) = sign(n_cross_e_scal_b_re)
|
453
|
pt_uint8 = (uint8_t*) &n_cross_e_scal_b_re; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_re
|
454
|
#ifdef LSB_FIRST_TCH
|
455
|
lfr_bp1[(i*NB_BYTES_BP1) + 9] = (uint8_t) (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
|
456
|
// Record it at the 8th bit position (from the right to the left)
|
457
|
// of lfr_bp1[i*NB_BYTES_BP1+9]
|
458
|
pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
|
459
|
#endif
|
460
|
#ifdef MSB_FIRST_TCH
|
461
|
lfr_bp1[(i*NB_BYTES_BP1) + 9] = (uint8_t) (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 1th octet:SPARC convention)
|
462
|
// Record it at the 8th bit position (from the right to the left)
|
463
|
// of lfr_bp1[i*NB_BYTES_BP1+9]
|
464
|
pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
|
465
|
#endif
|
466
|
if (bx_bx_star != 0.) { // no division by 0.
|
467
|
vphi = n_cross_e_scal_b_re / bx_bx_star; // Compute |VPHI|
|
468
|
}
|
469
|
else
|
470
|
{
|
471
|
vphi = 1.e+20; // Put a huge value
|
472
|
}
|
473
|
significand = frexpf(vphi, &exponent); // 0.5 <= significand < 1
|
474
|
// vphi = significand * 2^exponent
|
475
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
476
|
exponent = expmin;
|
477
|
significand = 0.5; // min value that can be recorded
|
478
|
}
|
479
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
480
|
exponent = expmax;
|
481
|
significand = 1.0; // max value that can be recorded
|
482
|
}
|
483
|
if (significand == 0) {// in that case exponent == 0 too
|
484
|
exponent = expmin;
|
485
|
significand = 0.5; // min value that can be recorded
|
486
|
}
|
487
|
|
488
|
lfr_bp1[(i*NB_BYTES_BP1) + 10] = (uint8_t) ((((significand*2)-1)*255) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
|
489
|
// where all the bits are used (0, ..., 255)
|
490
|
tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
|
491
|
// just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
492
|
#ifdef DEBUG_TCH
|
493
|
printf("|VPHI| : %16.8e\n",vphi);
|
494
|
printf("significand : %16.8e\n",significand);
|
495
|
printf("exponent : %d\n" ,exponent);
|
496
|
printf("tmp_uint8 for VPHI exponent : %d\n",tmp_uint8);
|
497
|
#endif
|
498
|
lfr_bp1[(i*NB_BYTES_BP1) + 9] = lfr_bp1[(i*NB_BYTES_BP1) + 9] | tmp_uint8; // Record these nbitexp bits in the nbitexp first bits
|
499
|
// (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+9]
|
500
|
#ifdef DEBUG_TCH
|
501
|
printf("lfr_bp1[i*NB_BYTES_BP1+9] for VPHI sign + VPHI exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+9]);
|
502
|
printf("lfr_bp1[i*NB_BYTES_BP1+10] for VPHI significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+10]);
|
503
|
#endif
|
504
|
pt_uint8 = (uint8_t*) &n_cross_e_scal_b_im; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_im
|
505
|
#ifdef LSB_FIRST_TCH
|
506
|
pt_uint8[3] = pt_uint8[3] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaNEBX| (32-bit float, sign bit in the 4th octet:PC convention)
|
507
|
#endif
|
508
|
#ifdef MSB_FIRST_TCH
|
509
|
pt_uint8[0] = pt_uint8[0] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaNEBX| (32-bit float, sign bit in the 1th octet:SPARC convention)
|
510
|
#endif
|
511
|
|
512
|
// Determine the sector argument of NEBX. If |Im| > |Re| affect
|
513
|
// an unsigned 8-bit char with 01000000; otherwise with null.
|
514
|
if (n_cross_e_scal_b_im > n_cross_e_scal_b_re) {
|
515
|
tmp_uint8 = 0x40;
|
516
|
}
|
517
|
else {
|
518
|
tmp_uint8 = 0x00;
|
519
|
}
|
520
|
|
521
|
lfr_bp1[(i*NB_BYTES_BP1) + 9] = lfr_bp1[(i*NB_BYTES_BP1) + 9] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
|
522
|
// to the left) of lfr_bp1[i*NB_BYTES_BP1+9], by simple logical addition.
|
523
|
#ifdef DEBUG_TCH
|
524
|
printf("|n_cross_e_scal_b_im| : %16.8e\n",n_cross_e_scal_b_im);
|
525
|
printf("|n_cross_e_scal_b_im|/bx_bx_star : %16.8e\n",n_cross_e_scal_b_im/bx_bx_star);
|
526
|
printf("ArgNEBX sign : %u\n",tmp_uint8);
|
527
|
printf("lfr_bp1[i*NB_BYTES_BP1+9] for VPHI & ArgNEBX signs + VPHI exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+9]);
|
528
|
#endif
|
529
|
}
|
530
|
}
|
531
|
|
532
|
void BP2_set( float * compressed_spec_mat, uint8_t nb_bins_compressed_spec_mat, uint8_t * lfr_bp2 )
|
533
|
{
|
534
|
float cross_re; // 32-bit floating point
|
535
|
float cross_im;
|
536
|
float aux;
|
537
|
float significand;
|
538
|
int exponent; // 32-bit signed integer
|
539
|
uint8_t nbitexp; // 8-bit unsigned integer
|
540
|
uint8_t nbitsig;
|
541
|
uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
|
542
|
int8_t expmin; // 8-bit signed integer
|
543
|
int8_t expmax;
|
544
|
uint16_t rangesig; // 16-bit unsigned integer
|
545
|
uint16_t autocor;
|
546
|
uint16_t exp;
|
547
|
uint16_t tmp_uint16;
|
548
|
uint16_t i;
|
549
|
|
550
|
#ifdef DEBUG_TCH
|
551
|
printf("BP2 : \n");
|
552
|
printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
|
553
|
#endif
|
554
|
|
555
|
// For floating point data to be recorded on 16-bit words :
|
556
|
nbitexp = 6; // number of bits for the exponent
|
557
|
nbitsig = 16 - nbitexp; // number of bits for the significand
|
558
|
rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
|
559
|
expmax = 32 + 5;
|
560
|
expmin = (expmax - (1 << nbitexp)) + 1;
|
561
|
|
562
|
#ifdef DEBUG_TCH
|
563
|
|
564
|
printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
|
565
|
printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
|
566
|
#endif
|
567
|
|
568
|
for(i = 0; i<nb_bins_compressed_spec_mat; i++){
|
569
|
//==============================================
|
570
|
// BP2 normalized cross correlations == PA_LFR_SC_BP2_CROSS_F0 == 10 * (8+8) bits
|
571
|
// == PA_LFR_SC_BP2_CROSS_RE_0_F0 == 8 bits
|
572
|
// == PA_LFR_SC_BP2_CROSS_IM_0_F0 == 8 bits
|
573
|
// == PA_LFR_SC_BP2_CROSS_RE_1_F0 == 8 bits
|
574
|
// == PA_LFR_SC_BP2_CROSS_IM_1_F0 == 8 bits
|
575
|
// == PA_LFR_SC_BP2_CROSS_RE_2_F0 == 8 bits
|
576
|
// == PA_LFR_SC_BP2_CROSS_IM_2_F0 == 8 bits
|
577
|
// == PA_LFR_SC_BP2_CROSS_RE_3_F0 == 8 bits
|
578
|
// == PA_LFR_SC_BP2_CROSS_IM_3_F0 == 8 bits
|
579
|
// == PA_LFR_SC_BP2_CROSS_RE_4_F0 == 8 bits
|
580
|
// == PA_LFR_SC_BP2_CROSS_IM_4_F0 == 8 bits
|
581
|
// == PA_LFR_SC_BP2_CROSS_RE_5_F0 == 8 bits
|
582
|
// == PA_LFR_SC_BP2_CROSS_IM_5_F0 == 8 bits
|
583
|
// == PA_LFR_SC_BP2_CROSS_RE_6_F0 == 8 bits
|
584
|
// == PA_LFR_SC_BP2_CROSS_IM_6_F0 == 8 bits
|
585
|
// == PA_LFR_SC_BP2_CROSS_RE_7_F0 == 8 bits
|
586
|
// == PA_LFR_SC_BP2_CROSS_IM_7_F0 == 8 bits
|
587
|
// == PA_LFR_SC_BP2_CROSS_RE_8_F0 == 8 bits
|
588
|
// == PA_LFR_SC_BP2_CROSS_IM_8_F0 == 8 bits
|
589
|
// == PA_LFR_SC_BP2_CROSS_RE_9_F0 == 8 bits
|
590
|
// == PA_LFR_SC_BP2_CROSS_IM_9_F0 == 8 bits
|
591
|
// S12
|
592
|
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9]);
|
593
|
if (aux != 0.) { // no division by 0.
|
594
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 1] / aux;
|
595
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] / aux;
|
596
|
}
|
597
|
else
|
598
|
{
|
599
|
cross_re = 0.;
|
600
|
cross_im = 0.;
|
601
|
}
|
602
|
lfr_bp2[(i*NB_BYTES_BP2) + 10] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
603
|
lfr_bp2[(i*NB_BYTES_BP2) + 20] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
604
|
#ifdef DEBUG_TCH
|
605
|
printf("\nBin number: %d\n", i);
|
606
|
printf("lfr_bp2[i*NB_BYTES_BP2+10] for cross12_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+10]);
|
607
|
printf("lfr_bp2[i*NB_BYTES_BP2+20] for cross12_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+20]);
|
608
|
#endif
|
609
|
// S13
|
610
|
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]);
|
611
|
if (aux != 0.) { // no division by 0.
|
612
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 3] / aux;
|
613
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4] / aux;
|
614
|
}
|
615
|
else
|
616
|
{
|
617
|
cross_re = 0.;
|
618
|
cross_im = 0.;
|
619
|
}
|
620
|
lfr_bp2[(i*NB_BYTES_BP2) + 11] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
621
|
lfr_bp2[(i*NB_BYTES_BP2) + 21] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
622
|
#ifdef DEBUG_TCH
|
623
|
printf("lfr_bp2[i*NB_BYTES_BP2+11] for cross13_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+11]);
|
624
|
printf("lfr_bp2[i*NB_BYTES_BP2+21] for cross13_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+21]);
|
625
|
#endif
|
626
|
// S14
|
627
|
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]);
|
628
|
if (aux != 0.) { // no division by 0.
|
629
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 5] / aux;
|
630
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 6] / aux;
|
631
|
}
|
632
|
else
|
633
|
{
|
634
|
cross_re = 0.;
|
635
|
cross_im = 0.;
|
636
|
}
|
637
|
lfr_bp2[(i*NB_BYTES_BP2) + 12] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
638
|
lfr_bp2[(i*NB_BYTES_BP2) + 22] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
639
|
#ifdef DEBUG_TCH
|
640
|
printf("lfr_bp2[i*NB_BYTES_BP2+12] for cross14_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+12]);
|
641
|
printf("lfr_bp2[i*NB_BYTES_BP2+22] for cross14_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+22]);
|
642
|
#endif
|
643
|
// S15
|
644
|
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
|
645
|
if (aux != 0.) { // no division by 0.
|
646
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 7] / aux;
|
647
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 8] / aux;
|
648
|
}
|
649
|
else
|
650
|
{
|
651
|
cross_re = 0.;
|
652
|
cross_im = 0.;
|
653
|
}
|
654
|
lfr_bp2[(i*NB_BYTES_BP2) + 13] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
655
|
lfr_bp2[(i*NB_BYTES_BP2) + 23] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
656
|
#ifdef DEBUG_TCH
|
657
|
printf("lfr_bp2[i*NB_BYTES_BP2+13] for cross15_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+13]);
|
658
|
printf("lfr_bp2[i*NB_BYTES_BP2+23] for cross15_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+23]);
|
659
|
#endif
|
660
|
// S23
|
661
|
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]);
|
662
|
if (aux != 0.) { // no division by 0.
|
663
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10] / aux;
|
664
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11] / aux;
|
665
|
}
|
666
|
else
|
667
|
{
|
668
|
cross_re = 0.;
|
669
|
cross_im = 0.;
|
670
|
}
|
671
|
lfr_bp2[(i*NB_BYTES_BP2) + 14] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
672
|
lfr_bp2[(i*NB_BYTES_BP2) + 24] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
673
|
#ifdef DEBUG_TCH
|
674
|
printf("lfr_bp2[i*NB_BYTES_BP2+14] for cross23_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+14]);
|
675
|
printf("lfr_bp2[i*NB_BYTES_BP2+24] for cross23_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+24]);
|
676
|
#endif
|
677
|
// S24
|
678
|
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]);
|
679
|
if (aux != 0.) { // no division by 0.
|
680
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] / aux;
|
681
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] / aux;
|
682
|
}
|
683
|
else
|
684
|
{
|
685
|
cross_re = 0.;
|
686
|
cross_im = 0.;
|
687
|
}
|
688
|
lfr_bp2[(i*NB_BYTES_BP2) + 15] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
689
|
lfr_bp2[(i*NB_BYTES_BP2) + 25] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
690
|
#ifdef DEBUG_TCH
|
691
|
printf("lfr_bp2[i*NB_BYTES_BP2+15] for cross24_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+15]);
|
692
|
printf("lfr_bp2[i*NB_BYTES_BP2+25] for cross24_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+25]);
|
693
|
#endif
|
694
|
// S25
|
695
|
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
|
696
|
if (aux != 0.) { // no division by 0.
|
697
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] / aux;
|
698
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] / aux;
|
699
|
}
|
700
|
else
|
701
|
{
|
702
|
cross_re = 0.;
|
703
|
cross_im = 0.;
|
704
|
}
|
705
|
lfr_bp2[(i*NB_BYTES_BP2) + 16] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
706
|
lfr_bp2[(i*NB_BYTES_BP2) + 26] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
707
|
#ifdef DEBUG_TCH
|
708
|
printf("lfr_bp2[i*NB_BYTES_BP2+16] for cross25_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+16]);
|
709
|
printf("lfr_bp2[i*NB_BYTES_BP2+26] for cross25_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+26]);
|
710
|
#endif
|
711
|
// S34
|
712
|
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]);
|
713
|
if (aux != 0.) { // no division by 0.
|
714
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] / aux;
|
715
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] / aux;
|
716
|
}
|
717
|
else
|
718
|
{
|
719
|
cross_re = 0.;
|
720
|
cross_im = 0.;
|
721
|
}
|
722
|
lfr_bp2[(i*NB_BYTES_BP2) + 17] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
723
|
lfr_bp2[(i*NB_BYTES_BP2) + 27] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
724
|
#ifdef DEBUG_TCH
|
725
|
printf("lfr_bp2[i*NB_BYTES_BP2+17] for cross34_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+17]);
|
726
|
printf("lfr_bp2[i*NB_BYTES_BP2+27] for cross34_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+27]);
|
727
|
#endif
|
728
|
// S35
|
729
|
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
|
730
|
if (aux != 0.) { // no division by 0.
|
731
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] / aux;
|
732
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] / aux;
|
733
|
}
|
734
|
else
|
735
|
{
|
736
|
cross_re = 0.;
|
737
|
cross_im = 0.;
|
738
|
}
|
739
|
lfr_bp2[(i*NB_BYTES_BP2) + 18] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
740
|
lfr_bp2[(i*NB_BYTES_BP2) + 28] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
741
|
#ifdef DEBUG_TCH
|
742
|
printf("lfr_bp2[i*NB_BYTES_BP2+18] for cross35_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+18]);
|
743
|
printf("lfr_bp2[i*NB_BYTES_BP2+28] for cross35_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+28]);
|
744
|
#endif
|
745
|
// S45
|
746
|
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
|
747
|
if (aux != 0.) { // no division by 0.
|
748
|
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 22] / aux;
|
749
|
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 23] / aux;
|
750
|
}
|
751
|
else
|
752
|
{
|
753
|
cross_re = 0.;
|
754
|
cross_im = 0.;
|
755
|
}
|
756
|
lfr_bp2[(i*NB_BYTES_BP2) + 19] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
757
|
lfr_bp2[(i*NB_BYTES_BP2) + 29] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
|
758
|
#ifdef DEBUG_TCH
|
759
|
printf("lfr_bp2[i*NB_BYTES_BP2+19] for cross45_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+19]);
|
760
|
printf("lfr_bp2[i*NB_BYTES_BP2+29] for cross45_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+29]);
|
761
|
#endif
|
762
|
//==============================================
|
763
|
// BP2 auto correlations == PA_LFR_SC_BP2_AUTO_F0 == 5*16 bits = 5*[6 bits (exponent) + 10 bits (significand)]
|
764
|
// == PA_LFR_SC_BP2_AUTO_A0_F0 == 16 bits
|
765
|
// == PA_LFR_SC_BP2_AUTO_A1_F0 == 16 bits
|
766
|
// == PA_LFR_SC_BP2_AUTO_A2_F0 == 16 bits
|
767
|
// == PA_LFR_SC_BP2_AUTO_A3_F0 == 16 bits
|
768
|
// == PA_LFR_SC_BP2_AUTO_A4_F0 == 16 bits
|
769
|
// S11
|
770
|
significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX], &exponent); // 0.5 <= significand < 1
|
771
|
// S11 = significand * 2^exponent
|
772
|
#ifdef DEBUG_TCH
|
773
|
printf("S11 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]);
|
774
|
printf("significand : %16.8e\n",significand);
|
775
|
printf("exponent : %d\n" ,exponent);
|
776
|
#endif
|
777
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
778
|
exponent = expmin;
|
779
|
significand = 0.5; // min value that can be recorded
|
780
|
}
|
781
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
782
|
exponent = expmax;
|
783
|
significand = 1.0; // max value that can be recorded
|
784
|
}
|
785
|
if (significand == 0) { // in that case exponent == 0 too
|
786
|
exponent = expmin;
|
787
|
significand = 0.5; // min value that can be recorded
|
788
|
}
|
789
|
|
790
|
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
791
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
792
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
793
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
794
|
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
795
|
// left place of the significand bits (nbitsig),
|
796
|
// making the 16-bit word to be recorded
|
797
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
798
|
#ifdef MSB_FIRST_TCH
|
799
|
lfr_bp2[(i*NB_BYTES_BP2) + 0] = pt_uint8[0]; // Record MSB of tmp_uint16
|
800
|
lfr_bp2[(i*NB_BYTES_BP2) + 1] = pt_uint8[1]; // Record LSB of tmp_uint16
|
801
|
#endif
|
802
|
#ifdef LSB_FIRST_TCH
|
803
|
lfr_bp2[(i*NB_BYTES_BP2) + 0] = pt_uint8[1]; // Record MSB of tmp_uint16
|
804
|
lfr_bp2[(i*NB_BYTES_BP2) + 1] = pt_uint8[0]; // Record LSB of tmp_uint16
|
805
|
#endif
|
806
|
#ifdef DEBUG_TCH
|
807
|
printf("autocor for S11 significand : %u\n",autocor);
|
808
|
printf("exp for S11 exponent : %u\n",exp);
|
809
|
printf("pt_uint8[1] for S11 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
|
810
|
printf("pt_uint8[0] for S11 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
|
811
|
printf("lfr_bp2[i*NB_BYTES_BP2+0] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+0], lfr_bp2[i*NB_BYTES_BP2+0]);
|
812
|
printf("lfr_bp2[i*NB_BYTES_BP2+1] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+1], lfr_bp2[i*NB_BYTES_BP2+1]);
|
813
|
#endif
|
814
|
// S22
|
815
|
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9], &exponent); // 0.5 <= significand < 1
|
816
|
// S22 = significand * 2^exponent
|
817
|
#ifdef DEBUG_TCH
|
818
|
printf("S22 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]);
|
819
|
printf("significand : %16.8e\n",significand);
|
820
|
printf("exponent : %d\n" ,exponent);
|
821
|
#endif
|
822
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
823
|
exponent = expmin;
|
824
|
significand = 0.5; // min value that can be recorded
|
825
|
}
|
826
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
827
|
exponent = expmax;
|
828
|
significand = 1.0; // max value that can be recorded
|
829
|
}
|
830
|
if (significand == 0) { // in that case exponent == 0 too
|
831
|
exponent = expmin;
|
832
|
significand = 0.5; // min value that can be recorded
|
833
|
}
|
834
|
|
835
|
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
836
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
837
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
838
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
839
|
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
840
|
// left place of the significand bits (nbitsig),
|
841
|
// making the 16-bit word to be recorded
|
842
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
843
|
#ifdef MSB_FIRST_TCH
|
844
|
lfr_bp2[(i*NB_BYTES_BP2) + 2] = pt_uint8[0]; // Record MSB of tmp_uint16
|
845
|
lfr_bp2[(i*NB_BYTES_BP2) + 3] = pt_uint8[1]; // Record LSB of tmp_uint16
|
846
|
#endif
|
847
|
#ifdef LSB_FIRST_TCH
|
848
|
lfr_bp2[(i*NB_BYTES_BP2) + 2] = pt_uint8[1]; // Record MSB of tmp_uint16
|
849
|
lfr_bp2[(i*NB_BYTES_BP2) + 3] = pt_uint8[0]; // Record LSB of tmp_uint16
|
850
|
#endif
|
851
|
#ifdef DEBUG_TCH
|
852
|
printf("autocor for S22 significand : %u\n",autocor);
|
853
|
printf("exp for S11 exponent : %u\n",exp);
|
854
|
printf("pt_uint8[1] for S22 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
|
855
|
printf("pt_uint8[0] for S22 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
|
856
|
printf("lfr_bp2[i*NB_BYTES_BP2+2] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+2], lfr_bp2[i*NB_BYTES_BP2+2]);
|
857
|
printf("lfr_bp2[i*NB_BYTES_BP2+3] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+3], lfr_bp2[i*NB_BYTES_BP2+3]);
|
858
|
#endif
|
859
|
// S33
|
860
|
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16], &exponent); // 0.5 <= significand < 1
|
861
|
// S33 = significand * 2^exponent
|
862
|
#ifdef DEBUG_TCH
|
863
|
printf("S33 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
|
864
|
printf("significand : %16.8e\n",significand);
|
865
|
printf("exponent : %d\n" ,exponent);
|
866
|
#endif
|
867
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
868
|
exponent = expmin;
|
869
|
significand = 0.5; // min value that can be recorded
|
870
|
}
|
871
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
872
|
exponent = expmax;
|
873
|
significand = 1.0; // max value that can be recorded
|
874
|
}
|
875
|
if (significand == 0) { // in that case exponent == 0 too
|
876
|
exponent = expmin;
|
877
|
significand = 0.5; // min value that can be recorded
|
878
|
}
|
879
|
|
880
|
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
881
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
882
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
883
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
884
|
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
885
|
// left place of the significand bits (nbitsig),
|
886
|
// making the 16-bit word to be recorded
|
887
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
888
|
#ifdef MSB_FIRST_TCH
|
889
|
lfr_bp2[(i*NB_BYTES_BP2) + 4] = pt_uint8[0]; // Record MSB of tmp_uint16
|
890
|
lfr_bp2[(i*NB_BYTES_BP2) + 5] = pt_uint8[1]; // Record LSB of tmp_uint16
|
891
|
#endif
|
892
|
#ifdef LSB_FIRST_TCH
|
893
|
lfr_bp2[(i*NB_BYTES_BP2) + 4] = pt_uint8[1]; // Record MSB of tmp_uint16
|
894
|
lfr_bp2[(i*NB_BYTES_BP2) + 5] = pt_uint8[0]; // Record LSB of tmp_uint16
|
895
|
#endif
|
896
|
#ifdef DEBUG_TCH
|
897
|
printf("autocor for S33 significand : %u\n",autocor);
|
898
|
printf("exp for S33 exponent : %u\n",exp);
|
899
|
printf("pt_uint8[1] for S33 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
|
900
|
printf("pt_uint8[0] for S33 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
|
901
|
printf("lfr_bp2[i*NB_BYTES_BP2+4] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+4], lfr_bp2[i*NB_BYTES_BP2+4]);
|
902
|
printf("lfr_bp2[i*NB_BYTES_BP2+5] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+5], lfr_bp2[i*NB_BYTES_BP2+5]);
|
903
|
#endif
|
904
|
// S44
|
905
|
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21], &exponent); // 0.5 <= significand < 1
|
906
|
// S44 = significand * 2^exponent
|
907
|
#ifdef DEBUG_TCH
|
908
|
printf("S44 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
|
909
|
printf("significand : %16.8e\n",significand);
|
910
|
printf("exponent : %d\n" ,exponent);
|
911
|
#endif
|
912
|
|
913
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
914
|
exponent = expmin;
|
915
|
significand = 0.5; // min value that can be recorded
|
916
|
}
|
917
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
918
|
exponent = expmax;
|
919
|
significand = 1.0; // max value that can be recorded
|
920
|
}
|
921
|
if (significand == 0) { // in that case exponent == 0 too
|
922
|
exponent = expmin;
|
923
|
significand = 0.5; // min value that can be recorded
|
924
|
}
|
925
|
|
926
|
autocor = (uint16_t) ((((significand*2)-1)*rangesig )+ 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
927
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
928
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
929
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
930
|
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
931
|
// left place of the significand bits (nbitsig),
|
932
|
// making the 16-bit word to be recorded
|
933
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
934
|
#ifdef MSB_FIRST_TCH
|
935
|
lfr_bp2[(i*NB_BYTES_BP2) + 6] = pt_uint8[0]; // Record MSB of tmp_uint16
|
936
|
lfr_bp2[(i*NB_BYTES_BP2) + 7] = pt_uint8[1]; // Record LSB of tmp_uint16
|
937
|
#endif
|
938
|
#ifdef LSB_FIRST_TCH
|
939
|
lfr_bp2[(i*NB_BYTES_BP2) + 6] = pt_uint8[1]; // Record MSB of tmp_uint16
|
940
|
lfr_bp2[(i*NB_BYTES_BP2) + 7] = pt_uint8[0]; // Record LSB of tmp_uint16
|
941
|
#endif
|
942
|
#ifdef DEBUG_TCH
|
943
|
printf("autocor for S44 significand : %u\n",autocor);
|
944
|
printf("exp for S44 exponent : %u\n",exp);
|
945
|
printf("pt_uint8[1] for S44 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
|
946
|
printf("pt_uint8[0] for S44 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
|
947
|
printf("lfr_bp2[i*NB_BYTES_BP2+6] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+6], lfr_bp2[i*NB_BYTES_BP2+6]);
|
948
|
printf("lfr_bp2[i*NB_BYTES_BP2+7] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+7], lfr_bp2[i*NB_BYTES_BP2+7]);
|
949
|
#endif
|
950
|
// S55
|
951
|
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24], &exponent); // 0.5 <= significand < 1
|
952
|
// S55 = significand * 2^exponent
|
953
|
#ifdef DEBUG_TCH
|
954
|
printf("S55 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
|
955
|
printf("significand : %16.8e\n",significand);
|
956
|
printf("exponent : %d\n" ,exponent);
|
957
|
#endif
|
958
|
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
|
959
|
exponent = expmin;
|
960
|
significand = 0.5; // min value that can be recorded
|
961
|
}
|
962
|
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
|
963
|
exponent = expmax;
|
964
|
significand = 1.0; // max value that can be recorded
|
965
|
}
|
966
|
if (significand == 0) { // in that case exponent == 0 too
|
967
|
exponent = expmin;
|
968
|
significand = 0.5; // min value that can be recorded
|
969
|
}
|
970
|
|
971
|
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
|
972
|
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
|
973
|
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
|
974
|
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
|
975
|
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
|
976
|
// left place of the significand bits (nbitsig),
|
977
|
// making the 16-bit word to be recorded
|
978
|
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
|
979
|
#ifdef MSB_FIRST_TCH
|
980
|
lfr_bp2[(i*NB_BYTES_BP2) + 8] = pt_uint8[0]; // Record MSB of tmp_uint16
|
981
|
lfr_bp2[(i*NB_BYTES_BP2) + 9] = pt_uint8[1]; // Record LSB of tmp_uint16
|
982
|
//printf("MSB:\n");
|
983
|
#endif
|
984
|
#ifdef LSB_FIRST_TCH
|
985
|
lfr_bp2[(i*NB_BYTES_BP2) + 8] = pt_uint8[1]; // Record MSB of tmp_uint16
|
986
|
lfr_bp2[(i*NB_BYTES_BP2) + 9] = pt_uint8[0]; // Record LSB of tmp_uint16
|
987
|
//printf("LSB:\n");
|
988
|
#endif
|
989
|
#ifdef DEBUG_TCH
|
990
|
printf("autocor for S55 significand : %u\n",autocor);
|
991
|
printf("exp for S55 exponent : %u\n",exp);
|
992
|
printf("pt_uint8[1] for S55 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
|
993
|
printf("pt_uint8[0] for S55 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
|
994
|
printf("lfr_bp2[i*NB_BYTES_BP2+8] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+8], lfr_bp2[i*NB_BYTES_BP2+8]);
|
995
|
printf("lfr_bp2[i*NB_BYTES_BP2+9] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+9], lfr_bp2[i*NB_BYTES_BP2+9]);
|
996
|
#endif
|
997
|
}
|
998
|
}
|
999
|
|
1000
|
|
1001
|
#endif // BASIC_PARAMETERS_H_INCLUDED
|